From 73895b315c51417ad5c98606128c8bb585d0ac72 Mon Sep 17 00:00:00 2001 From: Christophe Kerello Date: Fri, 5 Apr 2019 11:41:50 +0200 Subject: [PATCH] mtd: rawnand: stm32_fmc2: add STM32 FMC2 NAND flash controller driver The driver adds the support for the STMicroelectronics FMC2 NAND Controller found on STM32MP SOCs. This patch adds the polling mode, a basic mode that do not need any DMA channels. Only NAND_ECC_HW mode is actually supported. The driver supports a maximum 8k page size. The following ECC strength and step size are currently supported: - nand-ecc-strength = <8>, nand-ecc-step-size = <512> (BCH8) - nand-ecc-strength = <4>, nand-ecc-step-size = <512> (BCH4) - nand-ecc-strength = <1>, nand-ecc-step-size = <512> (Extended ECC based on Hamming) This patch has been tested on Micron MT29F8G08ABACAH4. Signed-off-by: Christophe Kerello --- drivers/mtd/nand/raw/Kconfig | 11 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/stm32_fmc2_nand.c | 1092 ++++++++++++++++++++++++ 3 files changed, 1104 insertions(+) create mode 100644 drivers/mtd/nand/raw/stm32_fmc2_nand.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 7f76e5ecef..dc087ab641 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -256,6 +256,17 @@ config NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS This flag prevent U-boot reconfigure NAND flash controller and reuse the NAND timing from 1st stage bootloader. +config NAND_STM32_FMC2 + bool "Support for NAND controller on STM32MP SoCs" + depends on ARCH_STM32MP + select SYS_NAND_SELF_INIT + imply CMD_NAND + help + Enables support for NAND Flash chips on SoCs containing the FMC2 + NAND controller. This controller is found on STM32MP SoCs. + The controller supports a maximum 8k page size and supports + a maximum 8-bit correction error per sector of 512 bytes. + comment "Generic NAND options" config SYS_NAND_BLOCK_SIZE diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index c61e3f3839..b10e718d15 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -65,6 +65,7 @@ obj-$(CONFIG_NAND_OMAP_ELM) += omap_elm.o obj-$(CONFIG_NAND_PLAT) += nand_plat.o obj-$(CONFIG_NAND_SUNXI) += sunxi_nand.o obj-$(CONFIG_NAND_ZYNQ) += zynq_nand.o +obj-$(CONFIG_NAND_STM32_FMC2) += stm32_fmc2_nand.o else # minimal SPL drivers diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c new file mode 100644 index 0000000000..2bb749d7f7 --- /dev/null +++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c @@ -0,0 +1,1092 @@ +// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause +/* + * Copyright (C) STMicroelectronics 2019 + * Author: Christophe Kerello + */ + +#include +#include +#include +#include +#include +#include +#include + +/* Bad block marker length */ +#define FMC2_BBM_LEN 2 + +/* ECC step size */ +#define FMC2_ECC_STEP_SIZE 512 + +/* Command delay */ +#define FMC2_RB_DELAY_US 30 + +/* Max chip enable */ +#define FMC2_MAX_CE 2 + +/* Timings */ +#define FMC2_THIZ 1 +#define FMC2_TIO 8000 +#define FMC2_TSYNC 3000 +#define FMC2_PCR_TIMING_MASK 0xf +#define FMC2_PMEM_PATT_TIMING_MASK 0xff + +/* FMC2 Controller Registers */ +#define FMC2_BCR1 0x0 +#define FMC2_PCR 0x80 +#define FMC2_SR 0x84 +#define FMC2_PMEM 0x88 +#define FMC2_PATT 0x8c +#define FMC2_HECCR 0x94 +#define FMC2_BCHISR 0x254 +#define FMC2_BCHICR 0x258 +#define FMC2_BCHPBR1 0x260 +#define FMC2_BCHPBR2 0x264 +#define FMC2_BCHPBR3 0x268 +#define FMC2_BCHPBR4 0x26c +#define FMC2_BCHDSR0 0x27c +#define FMC2_BCHDSR1 0x280 +#define FMC2_BCHDSR2 0x284 +#define FMC2_BCHDSR3 0x288 +#define FMC2_BCHDSR4 0x28c + +/* Register: FMC2_BCR1 */ +#define FMC2_BCR1_FMC2EN BIT(31) + +/* Register: FMC2_PCR */ +#define FMC2_PCR_PWAITEN BIT(1) +#define FMC2_PCR_PBKEN BIT(2) +#define FMC2_PCR_PWID_MASK GENMASK(5, 4) +#define FMC2_PCR_PWID(x) (((x) & 0x3) << 4) +#define FMC2_PCR_PWID_BUSWIDTH_8 0 +#define FMC2_PCR_PWID_BUSWIDTH_16 1 +#define FMC2_PCR_ECCEN BIT(6) +#define FMC2_PCR_ECCALG BIT(8) +#define FMC2_PCR_TCLR_MASK GENMASK(12, 9) +#define FMC2_PCR_TCLR(x) (((x) & 0xf) << 9) +#define FMC2_PCR_TCLR_DEFAULT 0xf +#define FMC2_PCR_TAR_MASK GENMASK(16, 13) +#define FMC2_PCR_TAR(x) (((x) & 0xf) << 13) +#define FMC2_PCR_TAR_DEFAULT 0xf +#define FMC2_PCR_ECCSS_MASK GENMASK(19, 17) +#define FMC2_PCR_ECCSS(x) (((x) & 0x7) << 17) +#define FMC2_PCR_ECCSS_512 1 +#define FMC2_PCR_ECCSS_2048 3 +#define FMC2_PCR_BCHECC BIT(24) +#define FMC2_PCR_WEN BIT(25) + +/* Register: FMC2_SR */ +#define FMC2_SR_NWRF BIT(6) + +/* Register: FMC2_PMEM */ +#define FMC2_PMEM_MEMSET(x) (((x) & 0xff) << 0) +#define FMC2_PMEM_MEMWAIT(x) (((x) & 0xff) << 8) +#define FMC2_PMEM_MEMHOLD(x) (((x) & 0xff) << 16) +#define FMC2_PMEM_MEMHIZ(x) (((x) & 0xff) << 24) +#define FMC2_PMEM_DEFAULT 0x0a0a0a0a + +/* Register: FMC2_PATT */ +#define FMC2_PATT_ATTSET(x) (((x) & 0xff) << 0) +#define FMC2_PATT_ATTWAIT(x) (((x) & 0xff) << 8) +#define FMC2_PATT_ATTHOLD(x) (((x) & 0xff) << 16) +#define FMC2_PATT_ATTHIZ(x) (((x) & 0xff) << 24) +#define FMC2_PATT_DEFAULT 0x0a0a0a0a + +/* Register: FMC2_BCHISR */ +#define FMC2_BCHISR_DERF BIT(1) +#define FMC2_BCHISR_EPBRF BIT(4) + +/* Register: FMC2_BCHICR */ +#define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) + +/* Register: FMC2_BCHDSR0 */ +#define FMC2_BCHDSR0_DUE BIT(0) +#define FMC2_BCHDSR0_DEF BIT(1) +#define FMC2_BCHDSR0_DEN_MASK GENMASK(7, 4) +#define FMC2_BCHDSR0_DEN_SHIFT 4 + +/* Register: FMC2_BCHDSR1 */ +#define FMC2_BCHDSR1_EBP1_MASK GENMASK(12, 0) +#define FMC2_BCHDSR1_EBP2_MASK GENMASK(28, 16) +#define FMC2_BCHDSR1_EBP2_SHIFT 16 + +/* Register: FMC2_BCHDSR2 */ +#define FMC2_BCHDSR2_EBP3_MASK GENMASK(12, 0) +#define FMC2_BCHDSR2_EBP4_MASK GENMASK(28, 16) +#define FMC2_BCHDSR2_EBP4_SHIFT 16 + +/* Register: FMC2_BCHDSR3 */ +#define FMC2_BCHDSR3_EBP5_MASK GENMASK(12, 0) +#define FMC2_BCHDSR3_EBP6_MASK GENMASK(28, 16) +#define FMC2_BCHDSR3_EBP6_SHIFT 16 + +/* Register: FMC2_BCHDSR4 */ +#define FMC2_BCHDSR4_EBP7_MASK GENMASK(12, 0) +#define FMC2_BCHDSR4_EBP8_MASK GENMASK(28, 16) +#define FMC2_BCHDSR4_EBP8_SHIFT 16 + +#define FMC2_NSEC_PER_SEC 1000000000L + +enum stm32_fmc2_ecc { + FMC2_ECC_HAM = 1, + FMC2_ECC_BCH4 = 4, + FMC2_ECC_BCH8 = 8 +}; + +struct stm32_fmc2_timings { + u8 tclr; + u8 tar; + u8 thiz; + u8 twait; + u8 thold_mem; + u8 tset_mem; + u8 thold_att; + u8 tset_att; +}; + +struct stm32_fmc2_nand { + struct nand_chip chip; + struct stm32_fmc2_timings timings; + int ncs; + int cs_used[FMC2_MAX_CE]; +}; + +static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) +{ + return container_of(chip, struct stm32_fmc2_nand, chip); +} + +struct stm32_fmc2_nfc { + struct nand_hw_control base; + struct stm32_fmc2_nand nand; + struct nand_ecclayout ecclayout; + void __iomem *io_base; + void __iomem *data_base[FMC2_MAX_CE]; + void __iomem *cmd_base[FMC2_MAX_CE]; + void __iomem *addr_base[FMC2_MAX_CE]; + struct clk clk; + + u8 cs_assigned; + int cs_sel; +}; + +static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base) +{ + return container_of(base, struct stm32_fmc2_nfc, base); +} + +/* Timings configuration */ +static void stm32_fmc2_timings_init(struct nand_chip *chip) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); + struct stm32_fmc2_timings *timings = &nand->timings; + u32 pcr = readl(fmc2->io_base + FMC2_PCR); + u32 pmem, patt; + + /* Set tclr/tar timings */ + pcr &= ~FMC2_PCR_TCLR_MASK; + pcr |= FMC2_PCR_TCLR(timings->tclr); + pcr &= ~FMC2_PCR_TAR_MASK; + pcr |= FMC2_PCR_TAR(timings->tar); + + /* Set tset/twait/thold/thiz timings in common bank */ + pmem = FMC2_PMEM_MEMSET(timings->tset_mem); + pmem |= FMC2_PMEM_MEMWAIT(timings->twait); + pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem); + pmem |= FMC2_PMEM_MEMHIZ(timings->thiz); + + /* Set tset/twait/thold/thiz timings in attribut bank */ + patt = FMC2_PATT_ATTSET(timings->tset_att); + patt |= FMC2_PATT_ATTWAIT(timings->twait); + patt |= FMC2_PATT_ATTHOLD(timings->thold_att); + patt |= FMC2_PATT_ATTHIZ(timings->thiz); + + writel(pcr, fmc2->io_base + FMC2_PCR); + writel(pmem, fmc2->io_base + FMC2_PMEM); + writel(patt, fmc2->io_base + FMC2_PATT); +} + +/* Controller configuration */ +static void stm32_fmc2_setup(struct nand_chip *chip) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + u32 pcr = readl(fmc2->io_base + FMC2_PCR); + + /* Configure ECC algorithm (default configuration is Hamming) */ + pcr &= ~FMC2_PCR_ECCALG; + pcr &= ~FMC2_PCR_BCHECC; + if (chip->ecc.strength == FMC2_ECC_BCH8) { + pcr |= FMC2_PCR_ECCALG; + pcr |= FMC2_PCR_BCHECC; + } else if (chip->ecc.strength == FMC2_ECC_BCH4) { + pcr |= FMC2_PCR_ECCALG; + } + + /* Set buswidth */ + pcr &= ~FMC2_PCR_PWID_MASK; + if (chip->options & NAND_BUSWIDTH_16) + pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); + + /* Set ECC sector size */ + pcr &= ~FMC2_PCR_ECCSS_MASK; + pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512); + + writel(pcr, fmc2->io_base + FMC2_PCR); +} + +/* Select target */ +static void stm32_fmc2_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); + + if (chipnr < 0 || chipnr >= nand->ncs) + return; + + if (nand->cs_used[chipnr] == fmc2->cs_sel) + return; + + fmc2->cs_sel = nand->cs_used[chipnr]; + chip->IO_ADDR_R = fmc2->data_base[fmc2->cs_sel]; + chip->IO_ADDR_W = fmc2->data_base[fmc2->cs_sel]; + + /* FMC2 setup routine */ + stm32_fmc2_setup(chip); + + /* Apply timings */ + stm32_fmc2_timings_init(chip); +} + +/* Set bus width to 16-bit or 8-bit */ +static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set) +{ + u32 pcr = readl(fmc2->io_base + FMC2_PCR); + + pcr &= ~FMC2_PCR_PWID_MASK; + if (set) + pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); + writel(pcr, fmc2->io_base + FMC2_PCR); +} + +/* Enable/disable ECC */ +static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable) +{ + u32 pcr = readl(fmc2->io_base + FMC2_PCR); + + pcr &= ~FMC2_PCR_ECCEN; + if (enable) + pcr |= FMC2_PCR_ECCEN; + writel(pcr, fmc2->io_base + FMC2_PCR); +} + +/* Clear irq sources in case of bch is used */ +static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2) +{ + writel(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR); +} + +/* Send command and address cycles */ +static void stm32_fmc2_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) { + writeb(cmd, fmc2->cmd_base[fmc2->cs_sel]); + return; + } + + writeb(cmd, fmc2->addr_base[fmc2->cs_sel]); +} + +/* + * Enable ECC logic and reset syndrome/parity bits previously calculated + * Syndrome/parity bits is cleared by setting the ECCEN bit to 0 + */ +static void stm32_fmc2_hwctl(struct mtd_info *mtd, int mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + + stm32_fmc2_set_ecc(fmc2, false); + + if (chip->ecc.strength != FMC2_ECC_HAM) { + u32 pcr = readl(fmc2->io_base + FMC2_PCR); + + if (mode == NAND_ECC_WRITE) + pcr |= FMC2_PCR_WEN; + else + pcr &= ~FMC2_PCR_WEN; + writel(pcr, fmc2->io_base + FMC2_PCR); + + stm32_fmc2_clear_bch_irq(fmc2); + } + + stm32_fmc2_set_ecc(fmc2, true); +} + +/* + * ECC Hamming calculation + * ECC is 3 bytes for 512 bytes of data (supports error correction up to + * max of 1-bit) + */ +static int stm32_fmc2_ham_calculate(struct mtd_info *mtd, const u8 *data, + u8 *ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + u32 heccr, sr; + int ret; + + ret = readl_poll_timeout(fmc2->io_base + FMC2_SR, sr, + sr & FMC2_SR_NWRF, 10000); + if (ret < 0) { + pr_err("Ham timeout\n"); + return ret; + } + + heccr = readl(fmc2->io_base + FMC2_HECCR); + + ecc[0] = heccr; + ecc[1] = heccr >> 8; + ecc[2] = heccr >> 16; + + /* Disable ecc */ + stm32_fmc2_set_ecc(fmc2, false); + + return 0; +} + +static int stm32_fmc2_ham_correct(struct mtd_info *mtd, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + u8 bit_position = 0, b0, b1, b2; + u32 byte_addr = 0, b; + u32 i, shifting = 1; + + /* Indicate which bit and byte is faulty (if any) */ + b0 = read_ecc[0] ^ calc_ecc[0]; + b1 = read_ecc[1] ^ calc_ecc[1]; + b2 = read_ecc[2] ^ calc_ecc[2]; + b = b0 | (b1 << 8) | (b2 << 16); + + /* No errors */ + if (likely(!b)) + return 0; + + /* Calculate bit position */ + for (i = 0; i < 3; i++) { + switch (b % 4) { + case 2: + bit_position += shifting; + case 1: + break; + default: + return -EBADMSG; + } + shifting <<= 1; + b >>= 2; + } + + /* Calculate byte position */ + shifting = 1; + for (i = 0; i < 9; i++) { + switch (b % 4) { + case 2: + byte_addr += shifting; + case 1: + break; + default: + return -EBADMSG; + } + shifting <<= 1; + b >>= 2; + } + + /* Flip the bit */ + dat[byte_addr] ^= (1 << bit_position); + + return 1; +} + +/* + * ECC BCH calculation and correction + * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to + * max of 4-bit/8-bit) + */ + +static int stm32_fmc2_bch_calculate(struct mtd_info *mtd, const u8 *data, + u8 *ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + u32 bchpbr, bchisr; + int ret; + + /* Wait until the BCH code is ready */ + ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr, + bchisr & FMC2_BCHISR_EPBRF, 10000); + if (ret < 0) { + pr_err("Bch timeout\n"); + return ret; + } + + /* Read parity bits */ + bchpbr = readl(fmc2->io_base + FMC2_BCHPBR1); + ecc[0] = bchpbr; + ecc[1] = bchpbr >> 8; + ecc[2] = bchpbr >> 16; + ecc[3] = bchpbr >> 24; + + bchpbr = readl(fmc2->io_base + FMC2_BCHPBR2); + ecc[4] = bchpbr; + ecc[5] = bchpbr >> 8; + ecc[6] = bchpbr >> 16; + + if (chip->ecc.strength == FMC2_ECC_BCH8) { + ecc[7] = bchpbr >> 24; + + bchpbr = readl(fmc2->io_base + FMC2_BCHPBR3); + ecc[8] = bchpbr; + ecc[9] = bchpbr >> 8; + ecc[10] = bchpbr >> 16; + ecc[11] = bchpbr >> 24; + + bchpbr = readl(fmc2->io_base + FMC2_BCHPBR4); + ecc[12] = bchpbr; + } + + /* Disable ecc */ + stm32_fmc2_set_ecc(fmc2, false); + + return 0; +} + +/* BCH algorithm correction */ +static int stm32_fmc2_bch_correct(struct mtd_info *mtd, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr; + u16 pos[8]; + int i, ret, den, eccsize = chip->ecc.size; + unsigned int nb_errs = 0; + + /* Wait until the decoding error is ready */ + ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr, + bchisr & FMC2_BCHISR_DERF, 10000); + if (ret < 0) { + pr_err("Bch timeout\n"); + return ret; + } + + bchdsr0 = readl(fmc2->io_base + FMC2_BCHDSR0); + bchdsr1 = readl(fmc2->io_base + FMC2_BCHDSR1); + bchdsr2 = readl(fmc2->io_base + FMC2_BCHDSR2); + bchdsr3 = readl(fmc2->io_base + FMC2_BCHDSR3); + bchdsr4 = readl(fmc2->io_base + FMC2_BCHDSR4); + + /* Disable ECC */ + stm32_fmc2_set_ecc(fmc2, false); + + /* No errors found */ + if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) + return 0; + + /* Too many errors detected */ + if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) + return -EBADMSG; + + pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK; + pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT; + pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK; + pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT; + pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK; + pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT; + pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK; + pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT; + + den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT; + for (i = 0; i < den; i++) { + if (pos[i] < eccsize * 8) { + __change_bit(pos[i], (unsigned long *)dat); + nb_errs++; + } + } + + return nb_errs; +} + +static int stm32_fmc2_read_page(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + int i, s, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + int eccstrength = chip->ecc.strength; + u8 *p = buf; + u8 *ecc_calc = chip->buffers->ecccalc; + u8 *ecc_code = chip->buffers->ecccode; + unsigned int max_bitflips = 0; + + for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps; + s++, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(mtd, NAND_ECC_READ); + + /* Read the nand page sector (512 bytes) */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1); + chip->read_buf(mtd, p, eccsize); + + /* Read the corresponding ECC bytes */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1); + chip->read_buf(mtd, ecc_code, eccbytes); + + /* Correct the data */ + stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc); + if (stat == -EBADMSG) + /* Check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, eccsize, + ecc_code, eccbytes, + NULL, 0, + eccstrength); + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + /* Read oob */ + if (oob_required) { + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + } + + return max_bitflips; +} + +/* Controller initialization */ +static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2) +{ + u32 pcr = readl(fmc2->io_base + FMC2_PCR); + u32 bcr1 = readl(fmc2->io_base + FMC2_BCR1); + + /* Set CS used to undefined */ + fmc2->cs_sel = -1; + + /* Enable wait feature and nand flash memory bank */ + pcr |= FMC2_PCR_PWAITEN; + pcr |= FMC2_PCR_PBKEN; + + /* Set buswidth to 8 bits mode for identification */ + pcr &= ~FMC2_PCR_PWID_MASK; + + /* ECC logic is disabled */ + pcr &= ~FMC2_PCR_ECCEN; + + /* Default mode */ + pcr &= ~FMC2_PCR_ECCALG; + pcr &= ~FMC2_PCR_BCHECC; + pcr &= ~FMC2_PCR_WEN; + + /* Set default ECC sector size */ + pcr &= ~FMC2_PCR_ECCSS_MASK; + pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048); + + /* Set default tclr/tar timings */ + pcr &= ~FMC2_PCR_TCLR_MASK; + pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT); + pcr &= ~FMC2_PCR_TAR_MASK; + pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT); + + /* Enable FMC2 controller */ + bcr1 |= FMC2_BCR1_FMC2EN; + + writel(bcr1, fmc2->io_base + FMC2_BCR1); + writel(pcr, fmc2->io_base + FMC2_PCR); + writel(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM); + writel(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT); +} + +/* Controller timings */ +static void stm32_fmc2_calc_timings(struct nand_chip *chip, + const struct nand_sdr_timings *sdrt) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); + struct stm32_fmc2_timings *tims = &nand->timings; + unsigned long hclk = clk_get_rate(&fmc2->clk); + unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000); + int tar, tclr, thiz, twait, tset_mem, tset_att, thold_mem, thold_att; + + tar = hclkp; + if (tar < sdrt->tAR_min) + tar = sdrt->tAR_min; + tims->tar = DIV_ROUND_UP(tar, hclkp) - 1; + if (tims->tar > FMC2_PCR_TIMING_MASK) + tims->tar = FMC2_PCR_TIMING_MASK; + + tclr = hclkp; + if (tclr < sdrt->tCLR_min) + tclr = sdrt->tCLR_min; + tims->tclr = DIV_ROUND_UP(tclr, hclkp) - 1; + if (tims->tclr > FMC2_PCR_TIMING_MASK) + tims->tclr = FMC2_PCR_TIMING_MASK; + + tims->thiz = FMC2_THIZ; + thiz = (tims->thiz + 1) * hclkp; + + /* + * tWAIT > tRP + * tWAIT > tWP + * tWAIT > tREA + tIO + */ + twait = hclkp; + if (twait < sdrt->tRP_min) + twait = sdrt->tRP_min; + if (twait < sdrt->tWP_min) + twait = sdrt->tWP_min; + if (twait < sdrt->tREA_max + FMC2_TIO) + twait = sdrt->tREA_max + FMC2_TIO; + tims->twait = DIV_ROUND_UP(twait, hclkp); + if (tims->twait == 0) + tims->twait = 1; + else if (tims->twait > FMC2_PMEM_PATT_TIMING_MASK) + tims->twait = FMC2_PMEM_PATT_TIMING_MASK; + + /* + * tSETUP_MEM > tCS - tWAIT + * tSETUP_MEM > tALS - tWAIT + * tSETUP_MEM > tDS - (tWAIT - tHIZ) + */ + tset_mem = hclkp; + if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) + tset_mem = sdrt->tCS_min - twait; + if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) + tset_mem = sdrt->tALS_min - twait; + if (twait > thiz && (sdrt->tDS_min > twait - thiz) && + (tset_mem < sdrt->tDS_min - (twait - thiz))) + tset_mem = sdrt->tDS_min - (twait - thiz); + tims->tset_mem = DIV_ROUND_UP(tset_mem, hclkp); + if (tims->tset_mem == 0) + tims->tset_mem = 1; + else if (tims->tset_mem > FMC2_PMEM_PATT_TIMING_MASK) + tims->tset_mem = FMC2_PMEM_PATT_TIMING_MASK; + + /* + * tHOLD_MEM > tCH + * tHOLD_MEM > tREH - tSETUP_MEM + * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) + */ + thold_mem = hclkp; + if (thold_mem < sdrt->tCH_min) + thold_mem = sdrt->tCH_min; + if (sdrt->tREH_min > tset_mem && + (thold_mem < sdrt->tREH_min - tset_mem)) + thold_mem = sdrt->tREH_min - tset_mem; + if ((sdrt->tRC_min > tset_mem + twait) && + (thold_mem < sdrt->tRC_min - (tset_mem + twait))) + thold_mem = sdrt->tRC_min - (tset_mem + twait); + if ((sdrt->tWC_min > tset_mem + twait) && + (thold_mem < sdrt->tWC_min - (tset_mem + twait))) + thold_mem = sdrt->tWC_min - (tset_mem + twait); + tims->thold_mem = DIV_ROUND_UP(thold_mem, hclkp); + if (tims->thold_mem == 0) + tims->thold_mem = 1; + else if (tims->thold_mem > FMC2_PMEM_PATT_TIMING_MASK) + tims->thold_mem = FMC2_PMEM_PATT_TIMING_MASK; + + /* + * tSETUP_ATT > tCS - tWAIT + * tSETUP_ATT > tCLS - tWAIT + * tSETUP_ATT > tALS - tWAIT + * tSETUP_ATT > tRHW - tHOLD_MEM + * tSETUP_ATT > tDS - (tWAIT - tHIZ) + */ + tset_att = hclkp; + if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) + tset_att = sdrt->tCS_min - twait; + if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) + tset_att = sdrt->tCLS_min - twait; + if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) + tset_att = sdrt->tALS_min - twait; + if (sdrt->tRHW_min > thold_mem && + (tset_att < sdrt->tRHW_min - thold_mem)) + tset_att = sdrt->tRHW_min - thold_mem; + if (twait > thiz && (sdrt->tDS_min > twait - thiz) && + (tset_att < sdrt->tDS_min - (twait - thiz))) + tset_att = sdrt->tDS_min - (twait - thiz); + tims->tset_att = DIV_ROUND_UP(tset_att, hclkp); + if (tims->tset_att == 0) + tims->tset_att = 1; + else if (tims->tset_att > FMC2_PMEM_PATT_TIMING_MASK) + tims->tset_att = FMC2_PMEM_PATT_TIMING_MASK; + + /* + * tHOLD_ATT > tALH + * tHOLD_ATT > tCH + * tHOLD_ATT > tCLH + * tHOLD_ATT > tCOH + * tHOLD_ATT > tDH + * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM + * tHOLD_ATT > tADL - tSETUP_MEM + * tHOLD_ATT > tWH - tSETUP_MEM + * tHOLD_ATT > tWHR - tSETUP_MEM + * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) + * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) + */ + thold_att = hclkp; + if (thold_att < sdrt->tALH_min) + thold_att = sdrt->tALH_min; + if (thold_att < sdrt->tCH_min) + thold_att = sdrt->tCH_min; + if (thold_att < sdrt->tCLH_min) + thold_att = sdrt->tCLH_min; + if (thold_att < sdrt->tCOH_min) + thold_att = sdrt->tCOH_min; + if (thold_att < sdrt->tDH_min) + thold_att = sdrt->tDH_min; + if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && + (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) + thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; + if (sdrt->tADL_min > tset_mem && + (thold_att < sdrt->tADL_min - tset_mem)) + thold_att = sdrt->tADL_min - tset_mem; + if (sdrt->tWH_min > tset_mem && + (thold_att < sdrt->tWH_min - tset_mem)) + thold_att = sdrt->tWH_min - tset_mem; + if (sdrt->tWHR_min > tset_mem && + (thold_att < sdrt->tWHR_min - tset_mem)) + thold_att = sdrt->tWHR_min - tset_mem; + if ((sdrt->tRC_min > tset_att + twait) && + (thold_att < sdrt->tRC_min - (tset_att + twait))) + thold_att = sdrt->tRC_min - (tset_att + twait); + if ((sdrt->tWC_min > tset_att + twait) && + (thold_att < sdrt->tWC_min - (tset_att + twait))) + thold_att = sdrt->tWC_min - (tset_att + twait); + tims->thold_att = DIV_ROUND_UP(thold_att, hclkp); + if (tims->thold_att == 0) + tims->thold_att = 1; + else if (tims->thold_att > FMC2_PMEM_PATT_TIMING_MASK) + tims->thold_att = FMC2_PMEM_PATT_TIMING_MASK; +} + +static int stm32_fmc2_setup_interface(struct mtd_info *mtd, int chipnr, + const struct nand_data_interface *conf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct nand_sdr_timings *sdrt; + + sdrt = nand_get_sdr_timings(conf); + if (IS_ERR(sdrt)) + return PTR_ERR(sdrt); + + if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + stm32_fmc2_calc_timings(chip, sdrt); + + /* Apply timings */ + stm32_fmc2_timings_init(chip); + + return 0; +} + +/* NAND callbacks setup */ +static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip) +{ + chip->ecc.hwctl = stm32_fmc2_hwctl; + + /* + * Specific callbacks to read/write a page depending on + * the algo used (Hamming, BCH). + */ + if (chip->ecc.strength == FMC2_ECC_HAM) { + /* Hamming is used */ + chip->ecc.calculate = stm32_fmc2_ham_calculate; + chip->ecc.correct = stm32_fmc2_ham_correct; + chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; + chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK; + return; + } + + /* BCH is used */ + chip->ecc.read_page = stm32_fmc2_read_page; + chip->ecc.calculate = stm32_fmc2_bch_calculate; + chip->ecc.correct = stm32_fmc2_bch_correct; + + if (chip->ecc.strength == FMC2_ECC_BCH8) + chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; + else + chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; +} + +/* FMC2 caps */ +static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength) +{ + /* Hamming */ + if (strength == FMC2_ECC_HAM) + return 4; + + /* BCH8 */ + if (strength == FMC2_ECC_BCH8) + return 14; + + /* BCH4 */ + return 8; +} + +NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes, + FMC2_ECC_STEP_SIZE, + FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); + +/* FMC2 probe */ +static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2, + ofnode node) +{ + struct stm32_fmc2_nand *nand = &fmc2->nand; + u32 cs[FMC2_MAX_CE]; + int ret, i; + + if (!ofnode_get_property(node, "reg", &nand->ncs)) + return -EINVAL; + + nand->ncs /= sizeof(u32); + if (!nand->ncs) { + pr_err("Invalid reg property size\n"); + return -EINVAL; + } + + ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs); + if (ret < 0) { + pr_err("Could not retrieve reg property\n"); + return -EINVAL; + } + + for (i = 0; i < nand->ncs; i++) { + if (cs[i] > FMC2_MAX_CE) { + pr_err("Invalid reg value: %d\n", + nand->cs_used[i]); + return -EINVAL; + } + + if (fmc2->cs_assigned & BIT(cs[i])) { + pr_err("Cs already assigned: %d\n", + nand->cs_used[i]); + return -EINVAL; + } + + fmc2->cs_assigned |= BIT(cs[i]); + nand->cs_used[i] = cs[i]; + } + + nand->chip.flash_node = ofnode_to_offset(node); + + return 0; +} + +static int stm32_fmc2_parse_dt(struct udevice *dev, + struct stm32_fmc2_nfc *fmc2) +{ + ofnode child; + int ret, nchips = 0; + + dev_for_each_subnode(child, dev) + nchips++; + + if (!nchips) { + pr_err("NAND chip not defined\n"); + return -EINVAL; + } + + if (nchips > 1) { + pr_err("Too many NAND chips defined\n"); + return -EINVAL; + } + + dev_for_each_subnode(child, dev) { + ret = stm32_fmc2_parse_child(fmc2, child); + if (ret) + return ret; + } + + return 0; +} + +static int stm32_fmc2_probe(struct udevice *dev) +{ + struct stm32_fmc2_nfc *fmc2 = dev_get_priv(dev); + struct stm32_fmc2_nand *nand = &fmc2->nand; + struct nand_chip *chip = &nand->chip; + struct mtd_info *mtd = &chip->mtd; + struct nand_ecclayout *ecclayout; + struct resource resource; + struct reset_ctl reset; + int oob_index, chip_cs, mem_region, ret, i; + + spin_lock_init(&fmc2->controller.lock); + init_waitqueue_head(&fmc2->controller.wq); + + ret = stm32_fmc2_parse_dt(dev, fmc2); + if (ret) + return ret; + + /* Get resources */ + ret = dev_read_resource(dev, 0, &resource); + if (ret) { + pr_err("Resource io_base not found"); + return ret; + } + fmc2->io_base = (void __iomem *)resource.start; + + for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE; + chip_cs++, mem_region += 3) { + if (!(fmc2->cs_assigned & BIT(chip_cs))) + continue; + + ret = dev_read_resource(dev, mem_region, &resource); + if (ret) { + pr_err("Resource data_base not found for cs%d", + chip_cs); + return ret; + } + fmc2->data_base[chip_cs] = (void __iomem *)resource.start; + + ret = dev_read_resource(dev, mem_region + 1, &resource); + if (ret) { + pr_err("Resource cmd_base not found for cs%d", + chip_cs); + return ret; + } + fmc2->cmd_base[chip_cs] = (void __iomem *)resource.start; + + ret = dev_read_resource(dev, mem_region + 2, &resource); + if (ret) { + pr_err("Resource addr_base not found for cs%d", + chip_cs); + return ret; + } + fmc2->addr_base[chip_cs] = (void __iomem *)resource.start; + } + + /* Enable the clock */ + ret = clk_get_by_index(dev, 0, &fmc2->clk); + if (ret) + return ret; + + ret = clk_enable(&fmc2->clk); + if (ret) + return ret; + + /* Reset */ + ret = reset_get_by_index(dev, 0, &reset); + if (!ret) { + reset_assert(&reset); + udelay(2); + reset_deassert(&reset); + } + + /* FMC2 init routine */ + stm32_fmc2_init(fmc2); + + chip->controller = &fmc2->base; + chip->select_chip = stm32_fmc2_select_chip; + chip->setup_data_interface = stm32_fmc2_setup_interface; + chip->cmd_ctrl = stm32_fmc2_cmd_ctrl; + chip->chip_delay = FMC2_RB_DELAY_US; + chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | + NAND_USE_BOUNCE_BUFFER; + + /* Default ECC settings */ + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.size = FMC2_ECC_STEP_SIZE; + chip->ecc.strength = FMC2_ECC_BCH8; + + /* Scan to find existence of the device */ + ret = nand_scan_ident(mtd, nand->ncs, NULL); + if (ret) + return ret; + + /* + * Only NAND_ECC_HW mode is actually supported + * Hamming => ecc.strength = 1 + * BCH4 => ecc.strength = 4 + * BCH8 => ecc.strength = 8 + * ECC sector size = 512 + */ + if (chip->ecc.mode != NAND_ECC_HW) { + pr_err("Nand_ecc_mode is not well defined in the DT\n"); + return -EINVAL; + } + + ret = nand_check_ecc_caps(chip, &stm32_fmc2_ecc_caps, + mtd->oobsize - FMC2_BBM_LEN); + if (ret) { + pr_err("No valid ECC settings set\n"); + return ret; + } + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + /* NAND callbacks setup */ + stm32_fmc2_nand_callbacks_setup(chip); + + /* Define ECC layout */ + ecclayout = &fmc2->ecclayout; + ecclayout->eccbytes = chip->ecc.bytes * + (mtd->writesize / chip->ecc.size); + oob_index = FMC2_BBM_LEN; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + ecclayout->oobfree->offset = oob_index; + ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset; + chip->ecc.layout = ecclayout; + + /* Configure bus width to 16-bit */ + if (chip->options & NAND_BUSWIDTH_16) + stm32_fmc2_set_buswidth_16(fmc2, true); + + /* Scan the device to fill MTD data-structures */ + ret = nand_scan_tail(mtd); + if (ret) + return ret; + + return nand_register(0, mtd); +} + +static const struct udevice_id stm32_fmc2_match[] = { + { .compatible = "st,stm32mp15-fmc2" }, + { /* Sentinel */ } +}; + +U_BOOT_DRIVER(stm32_fmc2_nand) = { + .name = "stm32_fmc2_nand", + .id = UCLASS_MTD, + .of_match = stm32_fmc2_match, + .probe = stm32_fmc2_probe, + .priv_auto_alloc_size = sizeof(struct stm32_fmc2_nfc), +}; + +void board_nand_init(void) +{ + struct udevice *dev; + int ret; + + ret = uclass_get_device_by_driver(UCLASS_MTD, + DM_GET_DRIVER(stm32_fmc2_nand), + &dev); + if (ret && ret != -ENODEV) + pr_err("Failed to initialize STM32 FMC2 NAND controller. (error %d)\n", + ret); +} -- 2.39.5