Naohiro Aota [Wed, 3 Mar 2021 08:55:48 +0000 (17:55 +0900)]
btrfs: zoned: do not account freed region of read-only block group as zone_unusable
We migrate zone unusable bytes to read-only bytes when a block group is
set to read-only, and account all the free region as bytes_readonly.
Thus, we should not increase block_group->zone_unusable when the block
group is read-only.
Fixes: f2399f44a57c ("btrfs: zoned: track unusable bytes for zones") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Wed, 3 Mar 2021 08:55:46 +0000 (17:55 +0900)]
btrfs: zoned: use sector_t for zone sectors
We need to use sector_t for zone_sectors, or it would set the zone size
to zero when the size >= 4GB (= 2^24 sectors) by shifting the
zone_sectors value by SECTOR_SHIFT. We're assuming zones sizes up to
8GiB.
Fixes: 1ac28cd685a3 ("btrfs: get zone information of zoned block devices") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
[CAUSE]
Normally we expect all submitted bio reads to only touch the range we
specified, and under subpage context, it means we should only touch the
range specified in each bvec.
But in data read path, inside end_bio_extent_readpage(), we have page
zeroing which only takes regular page size into consideration.
This means for subpage if we have an inode whose content looks like below:
0 16K 32K 48K 64K
|///////| |///////| |
|//| = data needs to be read from disk
| | = hole
And i_size is 64K initially.
Then the following race can happen:
T1 | T2
--------------------------------+--------------------------------
btrfs_do_readpage() |
|- isize = 64K; |
| At this time, the isize is |
| 64K |
| |
|- submit_extent_page() |
| submit previous assembled bio|
| assemble bio for [0, 16K) |
| |
|- submit_extent_page() |
submit read bio for [0, 16K) |
assemble read bio for |
[32K, 48K) |
|
| btrfs_setsize()
| |- i_size_write(, 16K);
| Now i_size is only 16K
end_io() for [0K, 16K) |
|- end_bio_extent_readpage() |
|- btrfs_verify_data_csum() |
| No csum error |
|- i_size = 16K; |
|- zero_user_segment(16K, |
PAGE_SIZE); |
!!! We zeroed range |
!!! [32K, 48K) |
| end_io for [32K, 48K)
| |- end_bio_extent_readpage()
| |- btrfs_verify_data_csum()
| ! CSUM MISMATCH !
| ! As the range is zeroed now !
[FIX]
To fix the problem, make end_bio_extent_readpage() to only zero the
range of bvec.
The bug only affects subpage read-write support, as for full read-only
mount we can't change i_size thus won't hit the race condition.
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Fri, 26 Feb 2021 17:51:44 +0000 (17:51 +0000)]
btrfs: fix warning when creating a directory with smack enabled
When we have smack enabled, during the creation of a directory smack may
attempt to add a "smack transmute" xattr on the inode, which results in
the following warning and trace:
This happens because at btrfs_mkdir() we call d_instantiate_new() while
holding a transaction handle, which results in the following call chain:
btrfs_mkdir()
trans = btrfs_start_transaction(root, 5);
d_instantiate_new()
smack_d_instantiate()
__vfs_setxattr()
btrfs_setxattr_trans()
btrfs_start_transaction()
start_transaction()
WARN_ON()
--> a tansaction start has TRANS_EXTWRITERS
set in its type
h->orig_rsv = h->block_rsv
h->block_rsv = NULL
btrfs_end_transaction(trans)
Besides the warning triggered at start_transaction, we set the handle's
block_rsv to NULL which may cause some surprises later on.
So fix this by making btrfs_setxattr_trans() not start a transaction when
we already have a handle on one, stored in current->journal_info, and use
that handle. We are good to use the handle because at btrfs_mkdir() we did
reserve space for the xattr and the inode item.
Nikolay Borisov [Mon, 22 Feb 2021 16:40:44 +0000 (18:40 +0200)]
btrfs: don't flush from btrfs_delayed_inode_reserve_metadata
Calling btrfs_qgroup_reserve_meta_prealloc from
btrfs_delayed_inode_reserve_metadata can result in flushing delalloc
while holding a transaction and delayed node locks. This is deadlock
prone. In the past multiple commits:
* bc5090a9a896 ("btrfs: qgroup: don't try to wait flushing if we're
already holding a transaction")
* 0c4dca4b2e93 ("btrfs: qgroup: don't commit transaction when we already
hold the handle")
Tried to solve various aspects of this but this was always a
whack-a-mole game. Unfortunately those 2 fixes don't solve a deadlock
scenario involving btrfs_delayed_node::mutex. Namely, one thread
can call btrfs_dirty_inode as a result of reading a file and modifying
its atime:
To fully address those cases the complete fix is to never issue any
flushing while holding the transaction or the delayed node lock. This
patch achieves it by calling qgroup_reserve_meta directly which will
either succeed without flushing or will fail and return -EDQUOT. In the
latter case that return value is going to be propagated to
btrfs_dirty_inode which will fallback to start a new transaction. That's
fine as the majority of time we expect the inode will have
BTRFS_DELAYED_NODE_INODE_DIRTY flag set which will result in directly
copying the in-memory state.
Fixes: c00d6cc1c92a ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT") CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Nikolay Borisov [Mon, 22 Feb 2021 16:40:42 +0000 (18:40 +0200)]
btrfs: free correct amount of space in btrfs_delayed_inode_reserve_metadata
Following commit f8fcc6aa5664 ("btrfs: delayed-inode: Remove wrong
qgroup meta reservation calls") this function now reserves num_bytes,
rather than the fixed amount of nodesize. As such this requires the
same amount to be freed in case of failure. Fix this by adjusting
the amount we are freeing.
Fixes: f8fcc6aa5664 ("btrfs: delayed-inode: Remove wrong qgroup meta reservation calls") CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
The intended logic of the check is to catch cases where the desired
free_space_tree setting doesn't match the mounted setting, and the
remount is anything but ro->rw. However, it makes the mistake of
checking equality on a masked integer (btrfs_test_opt) against a boolean
(btrfs_fs_compat_ro).
If you run the reproducer:
$ mount -o space_cache=v2 dev mnt
$ mount -o remount,ro mnt
you would expect no warning, because the remount is not attempting to
change the free space tree setting, but we do see the warning.
To fix this, add explicit bool type casts to the condition.
I tested a variety of transitions:
sudo mount -o space_cache=v2 /dev/vg0/lv0 mnt/lol
(fst enabled)
mount -o remount,ro mnt/lol
(no warning, no fst change)
sudo mount -o remount,rw,space_cache=v1,clear_cache
(no warning, ro->rw)
sudo mount -o remount,rw,space_cache=v2 mnt
(warning, rw->rw with change)
sudo mount -o remount,ro mnt
(no warning, no fst change)
sudo mount -o remount,rw,space_cache=v2 mnt
(no warning, no fst change)
Reported-by: Chris Murphy <lists@colorremedies.com> CC: stable@vger.kernel.org # 5.11 Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Dan Carpenter [Wed, 17 Feb 2021 06:04:34 +0000 (09:04 +0300)]
btrfs: validate qgroup inherit for SNAP_CREATE_V2 ioctl
The problem is we're copying "inherit" from user space but we don't
necessarily know that we're copying enough data for a 64 byte
struct. Then the next problem is that 'inherit' has a variable size
array at the end, and we have to verify that array is the size we
expected.
Fixes: 1821ecdb8ee3 ("Btrfs: add qgroup inheritance") CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Nikolay Borisov [Tue, 23 Feb 2021 13:20:42 +0000 (15:20 +0200)]
btrfs: unlock extents in btrfs_zero_range in case of quota reservation errors
If btrfs_qgroup_reserve_data returns an error (i.e quota limit reached)
the handling logic directly goes to the 'out' label without first
unlocking the extent range between lockstart, lockend. This results in
deadlocks as other processes try to lock the same extent.
Fixes: eb5819e83dfd ("btrfs: file: reserve qgroup space after the hole punch range is locked") CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Randy Dunlap [Fri, 19 Feb 2021 06:54:17 +0000 (22:54 -0800)]
btrfs: ref-verify: use 'inline void' keyword ordering
Fix build warnings of function signature when CONFIG_STACKTRACE is not
enabled by reordering the 'inline' and 'void' keywords.
../fs/btrfs/ref-verify.c:221:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration]
static void inline __save_stack_trace(struct ref_action *ra)
../fs/btrfs/ref-verify.c:225:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration]
static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Josef Bacik [Mon, 25 Jan 2021 21:42:35 +0000 (16:42 -0500)]
btrfs: avoid double put of block group when emptying cluster
It's wrong calling btrfs_put_block_group in
__btrfs_return_cluster_to_free_space if the block group passed is
different than the block group the cluster represents. As this means the
cluster doesn't have a reference to the passed block group. This results
in double put and a use-after-free bug.
Fix this by simply bailing if the block group we passed in does not
match the block group on the cluster.
Fixes: 01f76b315e70 ("Btrfs: rework allocation clustering") CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Tue, 16 Feb 2021 11:09:25 +0000 (11:09 +0000)]
btrfs: fix stale data exposure after cloning a hole with NO_HOLES enabled
When using the NO_HOLES feature, if we clone a file range that spans only
a hole into a range that is at or beyond the current i_size of the
destination file, we end up not setting the full sync runtime flag on the
inode. As a result, if we then fsync the destination file and have a power
failure, after log replay we can end up exposing stale data instead of
having a hole for that range.
The conditions for this to happen are the following:
1) We have a file with a size of, for example, 1280K;
2) There is a written (non-prealloc) extent for the file range from 1024K
to 1280K with a length of 256K;
3) This particular file extent layout is durably persisted, so that the
existing superblock persisted on disk points to a subvolume root where
the file has that exact file extent layout and state;
4) The file is truncated to a smaller size, to an offset lower than the
start offset of its last extent, for example to 800K. The truncate sets
the full sync runtime flag on the inode;
6) Fsync the file to log it and clear the full sync runtime flag;
7) Clone a region that covers only a hole (implicit hole due to NO_HOLES)
into the file with a destination offset that starts at or beyond the
256K file extent item we had - for example to offset 1024K;
8) Since the clone operation does not find extents in the source range,
we end up in the if branch at the bottom of btrfs_clone() where we
punch a hole for the file range starting at offset 1024K by calling
btrfs_replace_file_extents(). There we end up not setting the full
sync flag on the inode, because we don't know we are being called in
a clone context (and not fallocate's punch hole operation), and
neither do we create an extent map to represent a hole because the
requested range is beyond eof;
9) A further fsync to the file will be a fast fsync, since the clone
operation did not set the full sync flag, and therefore it relies on
modified extent maps to correctly log the file layout. But since
it does not find any extent map marking the range from 1024K (the
previous eof) to the new eof, it does not log a file extent item
for that range representing the hole;
10) After a power failure no hole for the range starting at 1024K is
punched and we end up exposing stale data from the old 256K extent.
Turning this into exact steps:
$ mkfs.btrfs -f -O no-holes /dev/sdi
$ mount /dev/sdi /mnt
# Create our test file with 3 extents of 256K and a 256K hole at offset
# 256K. The file has a size of 1280K.
$ xfs_io -f -s \
-c "pwrite -S 0xab -b 256K 0 256K" \
-c "pwrite -S 0xcd -b 256K 512K 256K" \
-c "pwrite -S 0xef -b 256K 768K 256K" \
-c "pwrite -S 0x73 -b 256K 1024K 256K" \
/mnt/sdi/foobar
# Make sure it's durably persisted. We want the last committed super
# block to point to this particular file extent layout.
sync
# Now truncate our file to a smaller size, falling within a position of
# the second extent. This sets the full sync runtime flag on the inode.
# Then fsync the file to log it and clear the full sync flag from the
# inode. The third extent is no longer part of the file and therefore
# it is not logged.
$ xfs_io -c "truncate 800K" -c "fsync" /mnt/foobar
# Now do a clone operation that only clones the hole and sets back the
# file size to match the size it had before the truncate operation
# (1280K).
$ xfs_io \
-c "reflink /mnt/foobar 256K 1024K 256K" \
-c "fsync" \
/mnt/foobar
# File data before power failure:
$ od -A d -t x1 /mnt/foobar 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab
* 0262144 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
* 0524288 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd
* 0786432 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef
* 0819200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
* 1310720
<power fail>
# Mount the fs again to replay the log tree.
$ mount /dev/sdi /mnt
# File data after power failure:
$ od -A d -t x1 /mnt/foobar 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab
* 0262144 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
* 0524288 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd
* 0786432 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef
* 0819200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
* 1048576 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73
* 1310720
The range from 1024K to 1280K should correspond to a hole but instead it
points to stale data, to the 256K extent that should not exist after the
truncate operation.
The issue does not exists when not using NO_HOLES, because for that case
we use file extent items to represent holes, these are found and copied
during the loop that iterates over extents at btrfs_clone(), and that
causes btrfs_replace_file_extents() to be called with a non-NULL
extent_info argument and therefore set the full sync runtime flag on the
inode.
So fix this by making the code that deals with a trailing hole during
cloning, at btrfs_clone(), to set the full sync flag on the inode, if the
range starts at or beyond the current i_size.
A test case for fstests will follow soon.
Backporting notes: for kernel 5.4 the change goes to ioctl.c into
btrfs_clone before the last call to btrfs_punch_hole_range.
CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Josef Bacik [Tue, 16 Feb 2021 20:43:22 +0000 (15:43 -0500)]
btrfs: tree-checker: do not error out if extent ref hash doesn't match
The tree checker checks the extent ref hash at read and write time to
make sure we do not corrupt the file system. Generally extent
references go inline, but if we have enough of them we need to make an
item, which looks like
However if key.offset collide with an unrelated extent reference we'll
simply key.offset++ until we get something that doesn't collide.
Obviously this doesn't match at tree checker time, and thus we error
while writing out the transaction. This is relatively easy to
reproduce, simply do something like the following
xfs_io -f -c "pwrite 0 1M" file
offset=2
for i in {0..10000}
do
xfs_io -c "reflink file 0 ${offset}M 1M" file
offset=$(( offset + 2 ))
done
And the sync will error out because we'll abort the transaction. The
magic values above are used because they generate hash collisions with
the first file in the main subvol.
The fix for this is to remove the hash value check from tree checker, as
we have no idea which offset ours should belong to.
Reported-by: Tuomas Lähdekorpi <tuomas.lahdekorpi@gmail.com> Fixes: e8aa04cd9b8f ("btrfs: tree-checker: Add EXTENT_DATA_REF check") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment] Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Fri, 5 Feb 2021 12:55:38 +0000 (12:55 +0000)]
btrfs: fix race between swap file activation and snapshot creation
When creating a snapshot we check if the current number of swap files, in
the root, is non-zero, and if it is, we error out and warn that we can not
create the snapshot because there are active swap files.
However this is racy because when a task started activation of a swap
file, another task might have started already snapshot creation and might
have seen the counter for the number of swap files as zero. This means
that after the swap file is activated we may end up with a snapshot of the
same root successfully created, and therefore when the first write to the
swap file happens it has to fall back into COW mode, which should never
happen for active swap files.
Basically what can happen is:
1) Task A starts snapshot creation and enters ioctl.c:create_snapshot().
There it sees that root->nr_swapfiles has a value of 0 so it continues;
2) Task B enters btrfs_swap_activate(). It is not aware that another task
started snapshot creation but it did not finish yet. It increments
root->nr_swapfiles from 0 to 1;
3) Task B checks that the file meets all requirements to be an active
swap file - it has NOCOW set, there are no snapshots for the inode's
root at the moment, no file holes, no reflinked extents, etc;
4) Task B returns success and now the file is an active swap file;
5) Task A commits the transaction to create the snapshot and finishes.
The swap file's extents are now shared between the original root and
the snapshot;
6) A write into an extent of the swap file is attempted - there is a
snapshot of the file's root, so we fall back to COW mode and therefore
the physical location of the extent changes on disk.
So fix this by taking the snapshot lock during swap file activation before
locking the extent range, as that is the order in which we lock these
during buffered writes.
Fixes: 5a4f56d05eabb ("Btrfs: support swap files") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Fri, 5 Feb 2021 12:55:37 +0000 (12:55 +0000)]
btrfs: fix race between writes to swap files and scrub
When we active a swap file, at btrfs_swap_activate(), we acquire the
exclusive operation lock to prevent the physical location of the swap
file extents to be changed by operations such as balance and device
replace/resize/remove. We also call there can_nocow_extent() which,
among other things, checks if the block group of a swap file extent is
currently RO, and if it is we can not use the extent, since a write
into it would result in COWing the extent.
However we have no protection against a scrub operation running after we
activate the swap file, which can result in the swap file extents to be
COWed while the scrub is running and operating on the respective block
group, because scrub turns a block group into RO before it processes it
and then back again to RW mode after processing it. That means an attempt
to write into a swap file extent while scrub is processing the respective
block group, will result in COWing the extent, changing its physical
location on disk.
Fix this by making sure that block groups that have extents that are used
by active swap files can not be turned into RO mode, therefore making it
not possible for a scrub to turn them into RO mode. When a scrub finds a
block group that can not be turned to RO due to the existence of extents
used by swap files, it proceeds to the next block group and logs a warning
message that mentions the block group was skipped due to active swap
files - this is the same approach we currently use for balance.
Fixes: 5a4f56d05eabb ("Btrfs: support swap files") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Fri, 5 Feb 2021 12:55:36 +0000 (12:55 +0000)]
btrfs: avoid checking for RO block group twice during nocow writeback
During the nocow writeback path, we currently iterate the rbtree of block
groups twice: once for checking if the target block group is RO with the
call to btrfs_extent_readonly()), and once again for getting a nocow
reference on the block group with a call to btrfs_inc_nocow_writers().
Since btrfs_inc_nocow_writers() already returns false when the target
block group is RO, remove the call to btrfs_extent_readonly(). Not only
we avoid searching the blocks group rbtree twice, it also helps reduce
contention on the lock that protects it (specially since it is a spin
lock and not a read-write lock). That may make a noticeable difference
on very large filesystems, with thousands of allocated block groups.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Nikolay Borisov [Mon, 8 Feb 2021 08:26:54 +0000 (10:26 +0200)]
btrfs: fix race between extent freeing/allocation when using bitmaps
During allocation the allocator will try to allocate an extent using
cluster policy. Once the current cluster is exhausted it will remove the
entry under btrfs_free_cluster::lock and subsequently acquire
btrfs_free_space_ctl::tree_lock to dispose of the already-deleted entry
and adjust btrfs_free_space_ctl::total_bitmap. This poses a problem
because there exists a race condition between removing the entry under
one lock and doing the necessary accounting holding a different lock
since extent freeing only uses the 2nd lock. This can result in the
following situation:
T1: T2:
btrfs_alloc_from_cluster insert_into_bitmap <holds tree_lock>
if (entry->bytes == 0) if (block_group && !list_empty(&block_group->cluster_list)) {
rb_erase(entry)
spin_unlock(&cluster->lock);
(total_bitmaps is still 4) spin_lock(&cluster->lock);
<doesn't find entry in cluster->root>
spin_lock(&ctl->tree_lock); <goes to new_bitmap label, adds
<blocked since T2 holds tree_lock> <a new entry and calls add_new_bitmap>
recalculate_thresholds <crashes,
due to total_bitmaps
becoming 5 and triggering
an ASSERT>
To fix this ensure that once depleted, the cluster entry is deleted when
both cluster lock and tree locks are held in the allocator (T1), this
ensures that even if there is a race with a concurrent
insert_into_bitmap call it will correctly find the entry in the cluster
and add the new space to it.
CC: <stable@vger.kernel.org> # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 4 Feb 2021 07:03:24 +0000 (15:03 +0800)]
btrfs: make check_compressed_csum() to be subpage compatible
Currently check_compressed_csum() completely relies on sectorsize ==
PAGE_SIZE to do checksum verification for compressed extents.
To make it subpage compatible, this patch will:
- Do extra calculation for the csum range
Since we have multiple sectors inside a page, we need to only hash
the range we want, not the full page anymore.
- Do sector-by-sector hash inside the page
With this patch and previous conversion on
btrfs_submit_compressed_read(), now we can read subpage compressed
extents properly, and do proper csum verification.
Qu Wenruo [Thu, 4 Feb 2021 07:03:23 +0000 (15:03 +0800)]
btrfs: make btrfs_submit_compressed_read() subpage compatible
For compressed read, we always submit page read using page size. This
doesn't work well with subpage, as for subpage one page can contain
several sectors. Such submission will read range out of what we want,
and cause problems.
Thankfully to make it subpage compatible, we only need to change how the
last page of the compressed extent is read.
Instead of always adding a full page to the compressed read bio, if we're
at the last page, calculate the size using compressed length, so that we
only add part of the range into the compressed read bio.
Since we are here, also change the PAGE_SIZE used in
lookup_extent_mapping() to sectorsize.
This modification won't cause any functional change, as
lookup_extent_mapping() can handle the case where the search range is
larger than found extent range.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Ira Weiny [Thu, 28 Jan 2021 06:15:03 +0000 (22:15 -0800)]
btrfs: fix raid6 qstripe kmap
When a qstripe is required an extra page is allocated and mapped. There
were 3 problems:
1) There is no corresponding call of kunmap() for the qstripe page.
2) There is no reason to map the qstripe page more than once if the
number of bits set in rbio->dbitmap is greater than one.
3) There is no reason to map the parity page and unmap it each time
through the loop.
The page memory can continue to be reused with a single mapping on each
iteration by raid6_call.gen_syndrome() without remapping. So map the
page for the duration of the loop.
Similarly, improve the algorithm by mapping the parity page just 1 time.
Fixes: 28da793ce6fa ("Btrfs, raid56: support parity scrub on raid56") CC: stable@vger.kernel.org # 4.4.x: 95cb678bca3a: btrfs: raid56: simplify tracking of Q stripe presence CC: stable@vger.kernel.org # 4.4.x Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Fri, 5 Feb 2021 14:58:36 +0000 (23:58 +0900)]
btrfs: zoned: deal with holes writing out tree-log pages
Since the zoned filesystem requires sequential write out of metadata, we
cannot proceed with a hole in tree-log pages. When such a hole exists,
btree_write_cache_pages() will return -EAGAIN. This happens when someone,
e.g., a concurrent transaction commit, writes a dirty extent in this
tree-log commit.
If we are not going to wait for the extents, we can hope the concurrent
writing fills the hole for us. So, we can ignore the error in this case and
hope the next write will succeed.
If we want to wait for them and got the error, we cannot wait for them
because it will cause a deadlock. So, let's bail out to a full commit in
this case.
Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:20 +0000 (19:22 +0900)]
btrfs: zoned: reorder log node allocation on zoned filesystem
This is the 3/3 patch to enable tree-log on zoned filesystems.
The allocation order of nodes of "fs_info->log_root_tree" and nodes of
"root->log_root" is not the same as the writing order of them. So, the
writing causes unaligned write errors.
Reorder the allocation of them by delaying allocation of the root node of
"fs_info->log_root_tree," so that the node buffers can go out sequentially
to devices.
Cc: Filipe Manana <fdmanana@gmail.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:19 +0000 (19:22 +0900)]
btrfs: zoned: serialize log transaction on zoned filesystems
This is the 2/3 patch to enable tree-log on zoned filesystems.
Since we can start more than one log transactions per subvolume
simultaneously, nodes from multiple transactions can be allocated
interleaved. Such mixed allocation results in non-sequential writes at
the time of a log transaction commit. The nodes of the global log root
tree (fs_info->log_root_tree), also have the same problem with mixed
allocation.
Serializes log transactions by waiting for a committing transaction when
someone tries to start a new transaction, to avoid the mixed allocation
problem. We must also wait for running log transactions from another
subvolume, but there is no easy way to detect which subvolume root is
running a log transaction. So, this patch forbids starting a new log
transaction when other subvolumes already allocated the global log root
tree.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:18 +0000 (19:22 +0900)]
btrfs: zoned: extend zoned allocator to use dedicated tree-log block group
This is the 1/3 patch to enable tree log on zoned filesystems.
The tree-log feature does not work on a zoned filesystem as is. Blocks for
a tree-log tree are allocated mixed with other metadata blocks and btrfs
writes and syncs the tree-log blocks to devices at the time of fsync(),
which has a different timing than a global transaction commit. As a
result, both writing tree-log blocks and writing other metadata blocks
become non-sequential writes that zoned filesystems must avoid.
Introduce a dedicated block group for tree-log blocks, so that tree-log
blocks and other metadata blocks can be separate write streams. As a
result, each write stream can now be written to devices separately.
"fs_info->treelog_bg" tracks the dedicated block group and assigns
"treelog_bg" on-demand on tree-log block allocation time.
This commit extends the zoned block allocator to use the block group.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:17 +0000 (19:22 +0900)]
btrfs: split alloc_log_tree()
This is a preparation patch for the next patch. Split alloc_log_tree()
into two parts. The first one allocating the tree structure, remains in
alloc_log_tree() and the second part allocating the tree node, which is
moved into btrfs_alloc_log_tree_node().
Also export the latter part is to be used in the next patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:16 +0000 (19:22 +0900)]
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems
When a bad checksum is found and if the filesystem has a mirror of the
damaged data, we read the correct data from the mirror and writes it to
damaged blocks. This however, violates the sequential write constraints
of a zoned block device.
We can consider three methods to repair an IO failure in zoned filesystems:
(1) Reset and rewrite the damaged zone
(2) Allocate new device extent and replace the damaged device extent to
the new extent
(3) Relocate the corresponding block group
Method (1) is most similar to a behavior done with regular devices.
However, it also wipes non-damaged data in the same device extent, and
so it unnecessary degrades non-damaged data.
Method (2) is much like device replacing but done in the same device. It
is safe because it keeps the device extent until the replacing finish.
However, extending device replacing is non-trivial. It assumes
"src_dev->physical == dst_dev->physical". Also, the extent mapping
replacing function should be extended to support replacing device extent
position in one device.
Method (3) invokes relocation of the damaged block group and is
straightforward to implement. It relocates all the mirrored device
extents, so it potentially is a more costly operation than method (1) or
(2). But it relocates only used extents which reduce the total IO size.
Let's apply method (3) for now. In the future, we can extend device-replace
and apply method (2).
For protecting a block group gets relocated multiple time with multiple
IO errors, this commit introduces "relocating_repair" bit to show it's
now relocating to repair IO failures. Also it uses a new kthread
"btrfs-relocating-repair", not to block IO path with relocating process.
This commit also supports repairing in the scrub process.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:15 +0000 (19:22 +0900)]
btrfs: zoned: enable relocation on a zoned filesystem
Currently fallocate() is disabled on a zoned filesystem. Since current
relocation process relies on preallocation to move file data extents, it
must be handled differently.
On a zoned filesystem, we just truncate the inode to the size that we
wanted to pre-allocate. Then, we flush dirty pages on the file before
finishing the relocation process. run_delalloc_zoned() will handle all
the allocations and submit IOs to the underlying layers.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:14 +0000 (19:22 +0900)]
btrfs: zoned: support dev-replace in zoned filesystems
This is 4/4 patch to implement device-replace on zoned filesystems.
Even after the copying is done, the write pointers of the source device
and the destination device may not be synchronized. For example, when
the last allocated extent is freed before device-replace process, the
extent is not copied, leaving a hole there.
Synchronize the write pointers by writing zeroes to the destination
device.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:13 +0000 (19:22 +0900)]
btrfs: zoned: implement copying for zoned device-replace
This is 3/4 patch to implement device-replace on zoned filesystems.
This commit implements copying. To do this, it tracks the write pointer
during the device replace process. As device-replace's copy process is
smart enough to only copy used extents on the source device, we have to
fill the gap to honor the sequential write requirement in the target
device.
The device-replace process on zoned filesystems must copy or clone all
the extents in the source device exactly once. So, we need to ensure
allocations started just before the dev-replace process to have their
corresponding extent information in the B-trees.
finish_extent_writes_for_zoned() implements that functionality, which
basically is the removed code in the commit 57929c4efbfe ("Btrfs: fix
block group remaining RO forever after error during device replace").
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:12 +0000 (19:22 +0900)]
btrfs: zoned: implement cloning for zoned device-replace
This is 2/4 patch to implement device replace for zoned filesystems.
In zoned mode, a block group must be either copied (from the source
device to the target device) or cloned (to both devices).
Implement the cloning part. If a block group targeted by an IO is marked
to copy, we should not clone the IO to the destination device, because
the block group is eventually copied by the replace process.
This commit also handles cloning of device reset.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:11 +0000 (19:22 +0900)]
btrfs: zoned: mark block groups to copy for device-replace
This is the 1/4 patch to support device-replace on zoned filesystems.
We have two types of IOs during the device replace process. One is an IO
to "copy" (by the scrub functions) all the device extents from the source
device to the destination device. The other one is an IO to "clone" (by
handle_ops_on_dev_replace()) new incoming write IOs from users to the
source device into the target device.
Cloning incoming IOs can break the sequential write rule in on target
device. When a write is mapped in the middle of a block group, the IO is
directed to the middle of a target device zone, which breaks the
sequential write requirement.
However, the cloning function cannot be disabled since incoming IOs
targeting already copied device extents must be cloned so that the IO is
executed on the target device.
We cannot use dev_replace->cursor_{left,right} to determine whether a bio
is going to a not yet copied region. Since we have a time gap between
finishing btrfs_scrub_dev() and rewriting the mapping tree in
btrfs_dev_replace_finishing(), we can have a newly allocated device extent
which is never cloned nor copied.
So the point is to copy only already existing device extents. This patch
introduces mark_block_group_to_copy() to mark existing block groups as a
target of copying. Then, handle_ops_on_dev_replace() and dev-replace can
check the flag to do their job.
Also, btrfs_finish_block_group_to_copy() will check if the copied stripe
is the last stripe in the block group. With the last stripe copied,
the to_copy flag is finally disabled. Afterwards we can safely clone
incoming IOs on this block group.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:10 +0000 (19:22 +0900)]
btrfs: zoned: do not use async metadata checksum on zoned filesystems
On zoned filesystems, btrfs uses per-fs zoned_meta_io_lock to serialize
the metadata write IOs.
Even with this serialization, write bios sent from btree_write_cache_pages
can be reordered by async checksum workers as these workers are per CPU
and not per zone.
To preserve write bio ordering, we disable async metadata checksum on a
zoned filesystem. This does not result in lower performance with HDDs as
a single CPU core is fast enough to do checksum for a single zone write
stream with the maximum possible bandwidth of the device. If multiple
zones are being written simultaneously, HDD seek overhead lowers the
achievable maximum bandwidth, resulting again in a per zone checksum
serialization not affecting the performance.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:09 +0000 (19:22 +0900)]
btrfs: zoned: wait for existing extents before truncating
When truncating a file, file buffers which have already been allocated
but not yet written may be truncated. Truncating these buffers could
cause breakage of a sequential write pattern in a block group if the
truncated blocks are for example followed by blocks allocated to another
file. To avoid this problem, always wait for write out of all unwritten
buffers before proceeding with the truncate execution.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:08 +0000 (19:22 +0900)]
btrfs: zoned: serialize metadata IO
We cannot use zone append for writing metadata, because the B-tree nodes
have references to each other using logical address. Without knowing
the address in advance, we cannot construct the tree in the first place.
So we need to serialize write IOs for metadata.
We cannot add a mutex around allocation and submission because metadata
blocks are allocated in an earlier stage to build up B-trees.
Add a zoned_meta_io_lock and hold it during metadata IO submission in
btree_write_cache_pages() to serialize IOs.
Furthermore, this adds a per-block group metadata IO submission pointer
"meta_write_pointer" to ensure sequential writing, which can break when
attempting to write back blocks in an unfinished transaction. If the
writing out failed because of a hole and the write out is for data
integrity (WB_SYNC_ALL), it returns EAGAIN.
A caller like fsync() code should handle this properly e.g. by falling
back to a full transaction commit.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:07 +0000 (19:22 +0900)]
btrfs: zoned: introduce dedicated data write path for zoned filesystems
If more than one IO is issued for one file extent, these IO can be
written to separate regions on a device. Since we cannot map one file
extent to such a separate area on a zoned filesystem, we need to follow
the "one IO == one ordered extent" rule.
The normal buffered, uncompressed and not pre-allocated write path (used
by cow_file_range()) sometimes does not follow this rule. It can write a
part of an ordered extent when specified a region to write e.g., when
its called from fdatasync().
Introduce a dedicated (uncompressed buffered) data write path for zoned
filesystems, that will COW the region and write it at once.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:05 +0000 (19:22 +0900)]
btrfs: zoned: use ZONE_APPEND write for zoned mode
Enable zone append writing for zoned mode. When using zone append, a
bio is issued to the start of a target zone and the device decides to
place it inside the zone. Upon completion the device reports the actual
written position back to the host.
Three parts are necessary to enable zone append mode. First, modify the
bio to use REQ_OP_ZONE_APPEND in btrfs_submit_bio_hook() and adjust the
bi_sector to point the beginning of the zone.
Second, record the returned physical address (and disk/partno) to the
ordered extent in end_bio_extent_writepage() after the bio has been
completed. We cannot resolve the physical address to the logical address
because we can neither take locks nor allocate a buffer in this end_bio
context. So, we need to record the physical address to resolve it later
in btrfs_finish_ordered_io().
And finally, rewrite the logical addresses of the extent mapping and
checksum data according to the physical address using btrfs_rmap_block.
If the returned address matches the originally allocated address, we can
skip this rewriting process.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
btrfs: save irq flags when looking up an ordered extent
A following patch will add another caller of
btrfs_lookup_ordered_extent(), but from a bio's endio context.
btrfs_lookup_ordered_extent() uses spin_lock_irq() which unconditionally
disables interrupts. Change this to spin_lock_irqsave() so interrupts
aren't disabled and re-enabled unconditionally.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
btrfs: zoned: cache if block group is on a sequential zone
On a zoned filesystem, cache if a block group is on a sequential write
only zone.
On sequential write only zones, we can use REQ_OP_ZONE_APPEND for
writing data, therefore provide btrfs_use_zone_append() to figure out if
IO is targeting a sequential write only zone and we can use
REQ_OP_ZONE_APPEND for data writing.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:02 +0000 (19:22 +0900)]
btrfs: extend btrfs_rmap_block for specifying a device
btrfs_rmap_block currently reverse-maps the physical addresses on all
devices to the corresponding logical addresses.
Extend the function to match to a specified device. The old functionality
of querying all devices is left intact by specifying NULL as target
device.
A block_device instead of a btrfs_device is passed into btrfs_rmap_block,
as this function is intended to reverse-map the result of a bio, which
only has a block_device.
Also export the function for later use.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
btrfs: zoned: check if bio spans across an ordered extent
To ensure that an ordered extent maps to a contiguous region on disk, we
need to maintain a "one bio == one ordered extent" rule.
Ensure that constructing bio does not span more than an ordered extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:22:00 +0000 (19:22 +0900)]
btrfs: zoned: split ordered extent when bio is sent
For a zone append write, the device decides the location the data is being
written to. Therefore we cannot ensure that two bios are written
consecutively on the device. In order to ensure that an ordered extent
maps to a contiguous region on disk, we need to maintain a "one bio ==
one ordered extent" rule.
Implement splitting of an ordered extent and extent map on bio submission
to adhere to the rule.
extract_ordered_extent() hooks into btrfs_submit_data_bio() and splits the
corresponding ordered extent so that the ordered extent's region fits into
one bio and the corresponding device limits.
Several sanity checks need to be done in extract_ordered_extent() e.g.
- We cannot split once end_bio'd ordered extent because we cannot divide
ordered->bytes_left for the split ones
- We do not expect a compressed ordered extent
- We should not have checksum list because we omit the list splitting.
Since the function is called before btrfs_wq_submit_bio() or
btrfs_csum_one_bio(), this should be always ensured.
We also need to split an extent map by creating a new one. If not,
unpin_extent_cache() complains about the difference between the start of
the extent map and the file's logical offset.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:58 +0000 (19:21 +0900)]
btrfs: zoned: use bio_add_zone_append_page
A zoned device has its own hardware restrictions e.g. max_zone_append_size
when using REQ_OP_ZONE_APPEND. To follow these restrictions, use
bio_add_zone_append_page() instead of bio_add_page(). We need target device
to use bio_add_zone_append_page(), so this commit reads the chunk
information to cache the target device to btrfs_io_bio(bio)->device.
Caching only the target device is sufficient here as zoned filesystems
only supports the single profile at the moment. Once more profiles will be
supported btrfs_io_bio can hold an extent_map to be able to check for the
restrictions of all devices the btrfs_bio will be mapped to.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:57 +0000 (19:21 +0900)]
btrfs: factor out helper adding a page to bio
Factor out adding a page to a bio from submit_extent_page(). The page
is added only when bio_flags are the same, contiguous and the added page
fits in the same stripe as pages in the bio.
Condition checks are reordered to allow early return to avoid possibly
heavy btrfs_bio_fits_in_stripe() calling.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:55 +0000 (19:21 +0900)]
btrfs: zoned: advance allocation pointer after tree log node
Since the allocation info of a tree log node is not recorded in the extent
tree, calculate_alloc_pointer() cannot detect this node, so the pointer
can be over a tree node.
Replaying the log calls btrfs_remove_free_space() for each node in the
log tree.
So, advance the pointer after the node to not allocate over it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:54 +0000 (19:21 +0900)]
btrfs: zoned: redirty released extent buffers
Tree manipulating operations like merging nodes often release
once-allocated tree nodes. Such nodes are cleaned so that pages in the
node are not uselessly written out. On zoned volumes, however, such
optimization blocks the following IOs as the cancellation of the write
out of the freed blocks breaks the sequential write sequence expected by
the device.
Introduce a list of clean and unwritten extent buffers that have been
released in a transaction. Redirty the buffers so that
btree_write_cache_pages() can send proper bios to the devices.
Besides it clears the entire content of the extent buffer not to confuse
raw block scanners e.g. 'btrfs check'. By clearing the content,
csum_dirty_buffer() complains about bytenr mismatch, so avoid the
checking and checksum using newly introduced buffer flag
EXTENT_BUFFER_NO_CHECK.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Implement a sequential extent allocator for zoned filesystems. This
allocator only needs to check if there is enough space in the block group
after the allocation pointer to satisfy the extent allocation request.
Therefore the allocator never manages bitmaps or clusters. Also, add
assertions to the corresponding functions.
As zone append writing is used, it would be unnecessary to track the
allocation offset, as the allocator only needs to check available space.
But by tracking and returning the offset as an allocated region, we can
skip modification of ordered extents and checksum information when there
is no IO reordering.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:52 +0000 (19:21 +0900)]
btrfs: zoned: track unusable bytes for zones
In a zoned filesystem a once written then freed region is not usable
until the underlying zone has been reset. So we need to distinguish such
unusable space from usable free space.
Therefore we need to introduce the "zone_unusable" field to the block
group structure, and "bytes_zone_unusable" to the space_info structure
to track the unusable space.
Pinned bytes are always reclaimed to the unusable space. But, when an
allocated region is returned before using e.g., the block group becomes
read-only between allocation time and reservation time, we can safely
return the region to the block group. For the situation, this commit
introduces "btrfs_add_free_space_unused". This behaves the same as
btrfs_add_free_space() on regular filesystem. On zoned filesystems, it
rewinds the allocation offset.
Because the read-only bytes tracks free but unusable bytes when the block
group is read-only, we need to migrate the zone_unusable bytes to
read-only bytes when a block group is marked read-only.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:51 +0000 (19:21 +0900)]
btrfs: zoned: calculate allocation offset for conventional zones
Conventional zones do not have a write pointer, so we cannot use it to
determine the allocation offset for sequential allocation if a block
group contains a conventional zone.
But instead, we can consider the end of the highest addressed extent in
the block group for the allocation offset.
For new block group, we cannot calculate the allocation offset by
consulting the extent tree, because it can cause deadlock by taking
extent buffer lock after chunk mutex, which is already taken in
btrfs_make_block_group(). Since it is a new block group anyways, we can
simply set the allocation offset to 0.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:50 +0000 (19:21 +0900)]
btrfs: zoned: load zone's allocation offset
A zoned filesystem must allocate blocks at the zones' write pointer. The
device's write pointer position can be mapped to a logical address within
a block group. To facilitate this, add an "alloc_offset" to the
block-group to track the logical addresses of the write pointer.
This logical address is populated in btrfs_load_block_group_zone_info()
from the write pointers of corresponding zones.
For now, zoned filesystems the single profile. Supporting non-single
profile with zone append writing is not trivial. For example, in the DUP
profile, we send a zone append writing IO to two zones on a device. The
device reply with written LBAs for the IOs. If the offsets of the
returned addresses from the beginning of the zone are different, then it
results in different logical addresses.
We need fine-grained logical to physical mapping to support such separated
physical address issue. Since it should require additional metadata type,
disable non-single profiles for now.
This commit supports the case all the zones in a block group are
sequential. The next patch will handle the case having a conventional
zone.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:48 +0000 (19:21 +0900)]
btrfs: zoned: implement zoned chunk allocator
Implement a zoned chunk and device extent allocator. One device zone
becomes a device extent so that a zone reset affects only this device
extent and does not change the state of blocks in the neighbor device
extents.
To implement the allocator, we need to extend the following functions for
a zoned filesystem.
init_alloc_chunk_ctl_zoned() is mostly the same as regular one. It always
set the stripe_size to the zone size and aligns the parameters to the zone
size.
dev_extent_search_start() only aligns the start offset to zone boundaries.
We don't care about the first 1MB like in regular filesystem because we
anyway reserve the first two zones for superblock logging.
dev_extent_hole_check_zoned() checks if zones in given hole are either
conventional or empty sequential zones. Also, it skips zones reserved for
superblock logging.
With the change to the hole, the new hole may now contain pending extents.
So, in this case, loop again to check that.
Finally, decide_stripe_size_zoned() should shrink the number of devices
instead of stripe size because we need to honor stripe_size == zone_size.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
btrfs: zoned: allow zoned filesystems on non-zoned block devices
Run a zoned filesystem on non-zoned devices. This is done by "slicing up"
the block device into static sized chunks and fake a conventional zone on
each of them. The emulated zone size is determined from the size of device
extent.
This is mainly aimed at testing of zoned filesystems, i.e. the zoned
chunk allocator, on regular block devices.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:46 +0000 (19:21 +0900)]
btrfs: zoned: disallow fitrim on zoned filesystems
The implementation of fitrim depends on space cache, which is not used
and disabled for zoned extent allocator. So the current code does not
work with zoned filesystem.
In the future, we can implement fitrim for zoned filesystems by enabling
space cache (but, only for fitrim) or scanning the extent tree at fitrim
time. For now, disallow fitrim on zoned filesystems.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
btrfs: zoned: do not load fs_info::zoned from incompat flag
Don't set the zoned flag in fs_info as soon as we're encountering the
incompat filesystem flag for a zoned filesystem on mount. The zoned flag
in fs_info is in a union together with the zone_size, so setting it too
early will result in setting an incorrect zone_size as well.
Once the correct zone_size is read from the device, we can rely on the
zoned flag in fs_info as well to determine if the filesystem is zoned.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
btrfs: release path before calling to btrfs_load_block_group_zone_info
Since we have no write pointer in conventional zones, we cannot
determine the allocation offset from it. Instead, we set the allocation
offset after the highest addressed extent. This is done by reading the
extent tree in btrfs_load_block_group_zone_info().
However, this function is called from btrfs_read_block_groups(), so the
read lock for the tree node could be recursively taken.
To avoid this unsafe locking scenario, release the path before reading
the extent tree to get the allocation offset.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:43 +0000 (19:21 +0900)]
btrfs: zoned: use regular super block location on zone emulation
A zoned filesystem currently has a superblock at the beginning of the
superblock logging zones if the zones are conventional. This difference
in superblock position causes a chicken-and-egg problem for filesystems
with emulated zones. Since the device is a regular (non-zoned) device,
we cannot know if the filesystem is regular or zoned while reading the
superblock. But, to load the superblock, we need to see if it is
emulated zoned or not.
Place the superblocks at the same location as they are on regular
filesystem on regular devices to solve the problem. It is possible
because it's ensured that all the superblock locations are at an
(emulated) conventional zone on regular devices.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:42 +0000 (19:21 +0900)]
btrfs: zoned: defer loading zone info after opening trees
This is a preparation patch to implement zone emulation on a regular
device.
To emulate a zoned filesystem on a regular (non-zoned) device, we need to
decide an emulated zone size. Instead of making it a compile-time static
value, we'll make it configurable at mkfs time. Since we have one zone ==
one device extent restriction, we can determine the emulated zone size
from the size of a device extent. We can extend btrfs_get_dev_zone_info()
to show a regular device filled with conventional zones once the zone size
is decided.
The current call site of btrfs_get_dev_zone_info() during the mount process
is earlier than loading the file system trees so that we don't know the
size of a device extent at this point. Thus we can't slice a regular device
to conventional zones.
This patch introduces btrfs_get_dev_zone_info_all_devices to load the zone
info for all the devices. And, it places this function in open_ctree()
after loading the trees.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Thu, 4 Feb 2021 10:21:41 +0000 (19:21 +0900)]
iomap: support REQ_OP_ZONE_APPEND
A ZONE_APPEND bio must follow hardware restrictions (e.g. not exceeding
max_zone_append_sectors) not to be split. bio_iov_iter_get_pages builds
such restricted bio using __bio_iov_append_get_pages if bio_op(bio) ==
REQ_OP_ZONE_APPEND.
To utilize it, we need to set the bio_op before calling
bio_iov_iter_get_pages(). This commit introduces IOMAP_F_ZONE_APPEND, so
that iomap user can set the flag to indicate they want REQ_OP_ZONE_APPEND
and restricted bio.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Add bio_add_zone_append_page(), a wrapper around bio_add_hw_page() which
is intended to be used by file systems that directly add pages to a bio
instead of using bio_iov_iter_get_pages().
Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Thu, 4 Feb 2021 14:35:44 +0000 (14:35 +0000)]
btrfs: fix extent buffer leak on failure to copy root
At btrfs_copy_root(), if the call to btrfs_inc_ref() fails we end up
returning without unlocking and releasing our reference on the extent
buffer named "cow" we previously allocated with btrfs_alloc_tree_block().
So fix that by unlocking the extent buffer and dropping our reference on
it before returning.
Fixes: be20aa9dbadc8c ("Btrfs: Add mount option to turn off data cow") CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 28 Jan 2021 11:25:08 +0000 (19:25 +0800)]
btrfs: explain page locking and readahead in read_extent_buffer_pages()
In read_extent_buffer_pages(), if we failed to lock the page atomically,
we just exit with return value 0.
This is counter-intuitive, as normally if we can't lock what we need, we
would return something like EAGAIN.
But that return hides under (wait == WAIT_NONE) branch, which only gets
triggered for readahead.
And for readahead, if we failed to lock the page, it means the extent
buffer is either being read by other thread, or has been read and is
under modification. Either way the eb will or has been cached, thus
readahead has no need to wait for it.
Add comment on this counter-intuitive behavior.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 2 Feb 2021 02:28:36 +0000 (10:28 +0800)]
btrfs: integrate page status update for data read path into begin/end_page_read
In btrfs data page read path, the page status update are handled in two
different locations:
btrfs_do_read_page()
{
while (cur <= end) {
/* No need to read from disk */
if (HOLE/PREALLOC/INLINE){
memset();
set_extent_uptodate();
continue;
}
/* Read from disk */
ret = submit_extent_page(end_bio_extent_readpage);
}
This is fine for sectorsize == PAGE_SIZE case, as for above loop we
should only hit one branch and then exit.
But for subpage, there is more work to be done in page status update:
- Page Unlock condition
Unlike regular page size == sectorsize case, we can no longer just
unlock a page.
Only the last reader of the page can unlock the page.
This means, we can unlock the page either in the while() loop, or in
the endio function.
- Page uptodate condition
Since we have multiple sectors to read for a page, we can only mark
the full page uptodate if all sectors are uptodate.
To handle both subpage and regular cases, introduce a pair of functions
to help handling page status update:
- begin_page_read()
For regular case, it does nothing.
For subpage case, it updates the reader counters so that later
end_page_read() can know who is the last one to unlock the page.
- end_page_read()
This is just endio_readpage_uptodate_page_status() renamed.
The original name is a little too long and too specific for endio.
The new thing added is the condition for page unlock.
Now for subpage data, we unlock the page if we're the last reader.
This does not only provide the basis for subpage data read, but also
hide the special handling of page read from the main read loop.
Also, since we're changing how the page lock is handled, there are two
existing error paths where we need to manually unlock the page before
calling begin_page_read().
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:34:00 +0000 (16:34 +0800)]
btrfs: introduce btrfs_subpage for data inodes
To support subpage sector size, data also need extra info to make sure
which sectors in a page are uptodate/dirty/...
This patch will make pages for data inodes get btrfs_subpage structure
attached, and detached when the page is freed.
This patch also slightly changes the timing when
set_page_extent_mapped() is called to make sure:
- We have page->mapping set
page->mapping->host is used to grab btrfs_fs_info, thus we can only
call this function after page is mapped to an inode.
One call site attaches pages to inode manually, thus we have to modify
the timing of set_page_extent_mapped() a bit.
- As soon as possible, before other operations
Since memory allocation can fail, we have to do extra error handling.
Calling set_page_extent_mapped() as soon as possible can simply the
error handling for several call sites.
The idea is pretty much the same as iomap_page, but with more bitmaps
for btrfs specific cases.
Currently the plan is to switch iomap if iomap can provide sector
aligned write back (only write back dirty sectors, but not the full
page, data balance require this feature).
So we will stick to btrfs specific bitmap for now.
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:58 +0000 (16:33 +0800)]
btrfs: support subpage in endio_readpage_update_page_status()
To handle subpage status update, add the following:
- Use btrfs_page_*() subpage-aware helpers to update page status
Now we can handle both cases well.
- No page unlock for subpage metadata
Since subpage metadata doesn't utilize page locking at all, skip it.
For subpage data locking, it's handled in later commits.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:57 +0000 (16:33 +0800)]
btrfs: introduce read_extent_buffer_subpage()
Introduce a helper, read_extent_buffer_subpage(), to do the subpage
extent buffer read.
The difference between regular and subpage routines are:
- No page locking
Here we completely rely on extent locking.
Page locking can reduce the concurrency greatly, as if we lock one
page to read one extent buffer, all the other extent buffers in the
same page will have to wait.
- Extent uptodate condition
Despite the existing PageUptodate() and EXTENT_BUFFER_UPTODATE check,
We also need to check btrfs_subpage::uptodate_bitmap.
- No page iteration
Just one page, no need to loop, this greatly simplified the subpage
routine.
This patch only implements the bio submit part, no endio support yet.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:56 +0000 (16:33 +0800)]
btrfs: support subpage in try_release_extent_buffer()
Unlike the original try_release_extent_buffer(),
try_release_subpage_extent_buffer() will iterate through all the ebs in
the page, and try to release each.
We can release the full page only after there's no private attached,
which means all ebs of that page have been released as well.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:54 +0000 (16:33 +0800)]
btrfs: support subpage in set/clear_extent_buffer_uptodate()
To support subpage in set_extent_buffer_uptodate and
clear_extent_buffer_uptodate we only need to use the subpage-aware
helpers to update the page bits.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:53 +0000 (16:33 +0800)]
btrfs: introduce helpers for subpage error status
Introduce the following functions to handle subpage error status:
- btrfs_subpage_set_error()
- btrfs_subpage_clear_error()
- btrfs_subpage_test_error()
These helpers can only be called when the page has subpage attached
and the range is ensured to be inside the page.
- btrfs_page_set_error()
- btrfs_page_clear_error()
- btrfs_page_test_error()
These helpers can handle both regular sector size and subpage without
problem.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:52 +0000 (16:33 +0800)]
btrfs: introduce helpers for subpage uptodate status
Introduce the following functions to handle subpage uptodate status:
- btrfs_subpage_set_uptodate()
- btrfs_subpage_clear_uptodate()
- btrfs_subpage_test_uptodate()
These helpers can only be called when the page has subpage attached
and the range is ensured to be inside the page.
- btrfs_page_set_uptodate()
- btrfs_page_clear_uptodate()
- btrfs_page_test_uptodate()
These helpers can handle both regular sector size and subpage.
Although caller should still ensure that the range is inside the page.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:50 +0000 (16:33 +0800)]
btrfs: support subpage for extent buffer page release
In btrfs_release_extent_buffer_pages(), we need to add extra handling
for subpage.
Introduce a helper, detach_extent_buffer_page(), to do different
handling for regular and subpage cases.
For subpage case, handle detaching page private.
For unmapped (dummy or cloned) ebs, we can detach the page private
immediately as the page can only be attached to one unmapped eb.
For mapped ebs, we have to ensure there are no eb in the page range
before we delete it, as page->private is shared between all ebs in the
same page.
But there is a subpage specific race, where we can race with extent
buffer allocation, and clear the page private while new eb is still
being utilized, like this:
Extent buffer A is the new extent buffer which will be allocated,
while extent buffer B is the last existing extent buffer of the page.
T1 (eb A) | T2 (eb B)
-------------------------------+------------------------------
alloc_extent_buffer() | btrfs_release_extent_buffer_pages()
|- p = find_or_create_page() | |
|- attach_extent_buffer_page() | |
| | |- detach_extent_buffer_page()
| | |- if (!page_range_has_eb())
| | | No new eb in the page range yet
| | | As new eb A hasn't yet been
| | | inserted into radix tree.
| | |- btrfs_detach_subpage()
| | |- detach_page_private();
|- radix_tree_insert() |
Then we have a metadata eb whose page has no private bit.
To avoid such race, we introduce a subpage metadata-specific member,
btrfs_subpage::eb_refs.
In alloc_extent_buffer() we increase eb_refs in the critical section of
private_lock. Then page_range_has_eb() will return true for
detach_extent_buffer_page(), and will not detach page private.
Qu Wenruo [Tue, 26 Jan 2021 08:33:49 +0000 (16:33 +0800)]
btrfs: make grab_extent_buffer_from_page() handle subpage case
For subpage case, grab_extent_buffer() can't really get an extent buffer
just from btrfs_subpage.
We have radix tree lock protecting us from inserting the same eb into
the tree. Thus we don't really need to do the extra hassle, just let
alloc_extent_buffer() handle the existing eb in radix tree.
Now if two ebs are being allocated as the same time, one will fail with
-EEIXST when inserting into the radix tree.
So for grab_extent_buffer(), just always return NULL for subpage case.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:48 +0000 (16:33 +0800)]
btrfs: make attach_extent_buffer_page() handle subpage case
For subpage case, we need to allocate additional memory for each
metadata page.
So we need to:
- Allow attach_extent_buffer_page() to return int to indicate allocation
failure
- Allow manually pre-allocate subpage memory for alloc_extent_buffer()
As we don't want to use GFP_ATOMIC under spinlock, we introduce
btrfs_alloc_subpage() and btrfs_free_subpage() functions for this
purpose.
(The simple wrap for btrfs_free_subpage() is for later convert to
kmem_cache. Already internally tested without problem)
- Preallocate btrfs_subpage structure for alloc_extent_buffer()
We don't want to call memory allocation with spinlock held, so
do preallocation before we acquire mapping->private_lock.
- Handle subpage and regular case differently in
attach_extent_buffer_page()
For regular case, no change, just do the usual thing.
For subpage case, allocate new memory or use the preallocated memory.
For future subpage metadata, we will make use of radix tree to grab
extent buffer.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:46 +0000 (16:33 +0800)]
btrfs: set UNMAPPED bit early in btrfs_clone_extent_buffer() for subpage support
For the incoming subpage support, UNMAPPED extent buffer will have
different behavior in btrfs_release_extent_buffer().
This means we need to set UNMAPPED bit early before calling
btrfs_release_extent_buffer().
Currently there is only one caller which relies on
btrfs_release_extent_buffer() in its error path while set UNMAPPED bit
late:
- btrfs_clone_extent_buffer()
Make it subpage compatible by setting the UNMAPPED bit early, since
we're here, also move the UPTODATE bit early.
There is another caller, __alloc_dummy_extent_buffer(), setting
UNMAPPED bit late, but that function clean up the allocated page
manually, thus no need for any modification.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Tue, 26 Jan 2021 08:33:45 +0000 (16:33 +0800)]
btrfs: merge PAGE_CLEAR_DIRTY and PAGE_SET_WRITEBACK to PAGE_START_WRITEBACK
PAGE_CLEAR_DIRTY and PAGE_SET_WRITEBACK are two defines used in
__process_pages_contig(), to let the function know to clear page dirty
bit and then set page writeback.
However page writeback and dirty bits are conflicting (at least for
sector size == PAGE_SIZE case), this means these two have to be always
updated together.
This means we can merge PAGE_CLEAR_DIRTY and PAGE_SET_WRITEBACK to
PAGE_START_WRITEBACK.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Wed, 27 Jan 2021 10:35:00 +0000 (10:35 +0000)]
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Often an fsync needs to fallback to a transaction commit for several
reasons (to ensure consistency after a power failure, a new block group
was allocated or a temporary error such as ENOMEM or ENOSPC happened).
In that case the log is marked as needing a full commit and any concurrent
tasks attempting to log inodes or commit the log will also fallback to the
transaction commit. When this happens they all wait for the task that first
started the transaction commit to finish the transaction commit - however
they wait until the full transaction commit happens, which is not needed,
as they only need to wait for the superblocks to be persisted and not for
unpinning all the extents pinned during the transaction's lifetime, which
even for short lived transactions can be a few thousand and take some
significant amount of time to complete - for dbench workloads I have
observed up to 4~5 milliseconds of time spent unpinning extents in the
worst cases, and the number of pinned extents was between 2 to 3 thousand.
So allow fsync tasks to skip waiting for the unpinning of extents when
they call btrfs_commit_transaction() and they were not the task that
started the transaction commit (that one has to do it, the alternative
would be to offload the transaction commit to another task so that it
could avoid waiting for the extent unpinning or offload the extent
unpinning to another task).
This patch is part of a patchset comprised of the following patches:
btrfs: remove unnecessary directory inode item update when deleting dir entry
btrfs: stop setting nbytes when filling inode item for logging
btrfs: avoid logging new ancestor inodes when logging new inode
btrfs: skip logging directories already logged when logging all parents
btrfs: skip logging inodes already logged when logging new entries
btrfs: remove unnecessary check_parent_dirs_for_sync()
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
After applying the entire patchset, dbench shows improvements in respect
to throughput and latency. The script used to measure it is the following:
$ cat dbench-test.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
The test was run on a physical machine with 12 cores (Intel corei7), 64G
of ram, using a NVMe device and a non-debug kernel configuration (Debian's
default configuration).
Whenever we fsync an inode, if it is a directory, a regular file that was
created in the current transaction or has last_unlink_trans set to the
generation of the current transaction, we check if any of its ancestor
inodes (and the inode itself if it is a directory) can not be logged and
need a fallback to a full transaction commit - if so, we return with a
value of 1 in order to fallback to a transaction commit.
However we often do not need to fallback to a transaction commit because:
1) The ancestor inode is not an immediate parent, and therefore there is
not an explicit request to log it and it is not needed neither to
guarantee the consistency of the inode originally asked to be logged
(fsynced) nor its immediate parent;
2) The ancestor inode was already logged before, in which case any link,
unlink or rename operation updates the log as needed.
So for these two cases we can avoid an unnecessary transaction commit.
Therefore remove check_parent_dirs_for_sync() and add a check at the top
of btrfs_log_inode() to make us fallback immediately to a transaction
commit when we are logging a directory inode that can not be logged and
needs a full transaction commit. All we need to protect is the case where
after renaming a file someone fsyncs only the old directory, which would
result is losing the renamed file after a log replay.
This patch is part of a patchset comprised of the following patches:
btrfs: remove unnecessary directory inode item update when deleting dir entry
btrfs: stop setting nbytes when filling inode item for logging
btrfs: avoid logging new ancestor inodes when logging new inode
btrfs: skip logging directories already logged when logging all parents
btrfs: skip logging inodes already logged when logging new entries
btrfs: remove unnecessary check_parent_dirs_for_sync()
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Performance results, after applying all patches, are mentioned in the
change log of the last patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Wed, 27 Jan 2021 10:34:58 +0000 (10:34 +0000)]
btrfs: skip logging inodes already logged when logging new entries
When logging new directory entries of a directory, we log the inodes of
new dentries and the inodes of dentries pointing to directories that
may have been created in past transactions. For the case of directories
we log in full mode, which can be particularly expensive for large
directories.
We do use btrfs_inode_in_log() to skip already logged inodes, however for
that helper to return true, it requires that the log transaction used to
log the inode to be already committed. This means that when we have more
than one task using the same log transaction we can end up logging an
inode multiple times, which is a waste of time and not necessary since
the log will be committed by one of the tasks and the others will wait for
the log transaction to be committed before returning to user space.
So simply replace the use of btrfs_inode_in_log() with the new helper
function need_log_inode(), introduced in a previous commit.
This patch is part of a patchset comprised of the following patches:
btrfs: remove unnecessary directory inode item update when deleting dir entry
btrfs: stop setting nbytes when filling inode item for logging
btrfs: avoid logging new ancestor inodes when logging new inode
btrfs: skip logging directories already logged when logging all parents
btrfs: skip logging inodes already logged when logging new entries
btrfs: remove unnecessary check_parent_dirs_for_sync()
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Performance results, after applying all patches, are mentioned in the
change log of the last patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Wed, 27 Jan 2021 10:34:57 +0000 (10:34 +0000)]
btrfs: skip logging directories already logged when logging all parents
Some times when we fsync an inode we need to do a full log of all its
ancestors (due to unlink, link or rename operations), which can be an
expensive operation, specially if the directories are large.
However if we find an ancestor directory inode that is already logged in
the current transaction, and has no inserted/updated/deleted xattrs since
it was last logged, we can skip logging the directory again. We are safe
to skip that since we know that for logged directories, any link, unlink
or rename operations that implicate the directory will update the log as
necessary.
So use the helper need_log_dir(), introduced in a previous commit, to
detect already logged directories that can be skipped.
This patch is part of a patchset comprised of the following patches:
btrfs: remove unnecessary directory inode item update when deleting dir entry
btrfs: stop setting nbytes when filling inode item for logging
btrfs: avoid logging new ancestor inodes when logging new inode
btrfs: skip logging directories already logged when logging all parents
btrfs: skip logging inodes already logged when logging new entries
btrfs: remove unnecessary check_parent_dirs_for_sync()
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Performance results, after applying all patches, are mentioned in the
change log of the last patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Wed, 27 Jan 2021 10:34:56 +0000 (10:34 +0000)]
btrfs: avoid logging new ancestor inodes when logging new inode
When we fsync a new file, created in the current transaction, we check
all its ancestor inodes and always log them if they were created in the
current transaction - even if we have already logged them before, which
is a waste of time.
So avoid logging new ancestor inodes if they were already logged before
and have no xattrs added/updated/removed since they were last logged.
This patch is part of a patchset comprised of the following patches:
btrfs: remove unnecessary directory inode item update when deleting dir entry
btrfs: stop setting nbytes when filling inode item for logging
btrfs: avoid logging new ancestor inodes when logging new inode
btrfs: skip logging directories already logged when logging all parents
btrfs: skip logging inodes already logged when logging new entries
btrfs: remove unnecessary check_parent_dirs_for_sync()
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Performance results, after applying all patches, are mentioned in the
change log of the last patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Wed, 27 Jan 2021 10:34:55 +0000 (10:34 +0000)]
btrfs: stop setting nbytes when filling inode item for logging
When we fill an inode item for logging we are setting its nbytes field
with the value returned by inode_get_bytes() (a VFS API), however we do
not need it because it is not used during log replay. In fact, for fast
fsyncs, when we call inode_get_bytes() we may even get an outdated value
for nbytes because the nbytes field of the inode is only updated when
ordered extents complete, and a fast fsync only waits for writeback to
complete, it does not wait for ordered extent completion.
So just remove the setup of nbytes and add an explicit comment mentioning
why we do not set it. This also avoids adding contention on the inode's
i_lock (VFS) with concurrent stat() calls, since that spinlock is used by
inode_get_bytes() which is also called by our stat callback
(btrfs_getattr()).
This patch is part of a patchset comprised of the following patches:
btrfs: remove unnecessary directory inode item update when deleting dir entry
btrfs: stop setting nbytes when filling inode item for logging
btrfs: avoid logging new ancestor inodes when logging new inode
btrfs: skip logging directories already logged when logging all parents
btrfs: skip logging inodes already logged when logging new entries
btrfs: remove unnecessary check_parent_dirs_for_sync()
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Performance results, after applying all patches, are mentioned in the
change log of the last patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Wed, 27 Jan 2021 10:34:54 +0000 (10:34 +0000)]
btrfs: remove unnecessary directory inode item update when deleting dir entry
When we remove a directory entry, as part of an unlink operation, if the
directory was logged before we must remove the directory index items from
the log. We are also updating the inode item of the directory to update
its i_size, but that is not necessary because during log replay we do not
need it and we correctly adjust the i_size in the inode item of the
subvolume as we process directory index items and replay deletes.
This is not needed since commit 56d2c6c4d02fe5 ("Btrfs: drop dir i_size
when adding new names on replay"), where we explicitly ignore the i_size
of directory inode items on log replay. Before that we used it but it
was buggy as mentioned in that commit's change log (i_size got a larger
value then it should have).
So stop updating the i_size of the directory inode item in the log, as
that is a waste of time, adds more log contention to the log tree and
often results in COWing more extent buffers for the log tree.
This code path is triggered often during dbench workloads for example.
This patch is part of a patchset comprised of the following patches:
btrfs: remove unnecessary directory inode item update when deleting dir entry
btrfs: stop setting nbytes when filling inode item for logging
btrfs: avoid logging new ancestor inodes when logging new inode
btrfs: skip logging directories already logged when logging all parents
btrfs: skip logging inodes already logged when logging new entries
btrfs: remove unnecessary check_parent_dirs_for_sync()
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Performance results, after applying all patches, are mentioned in the
change log of the last patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Michal Rostecki [Wed, 27 Jan 2021 13:57:27 +0000 (14:57 +0100)]
btrfs: let callers of btrfs_get_io_geometry pass the em
Before this change, the btrfs_get_io_geometry() function was calling
btrfs_get_chunk_map() to get the extent mapping, necessary for
calculating the I/O geometry. It was using that extent mapping only
internally and freeing the pointer after its execution.
That resulted in calling btrfs_get_chunk_map() de facto twice by the
__btrfs_map_block() function. It was calling btrfs_get_io_geometry()
first and then calling btrfs_get_chunk_map() directly to get the extent
mapping, used by the rest of the function.
Change that to passing the extent mapping to the btrfs_get_io_geometry()
function as an argument.
This could improve performance in some cases. For very large
filesystems, i.e. several thousands of allocated chunks, not only this
avoids searching two times the rbtree, saving time, it may also help
reducing contention on the lock that protects the tree - thinking of
writeback starting for multiple inodes, other tasks allocating or
removing chunks, and anything else that requires access to the rbtree.
Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Michal Rostecki <mrostecki@suse.com> Reviewed-by: David Sterba <dsterba@suse.com>
[ add Filipe's analysis ] Signed-off-by: David Sterba <dsterba@suse.com>
start = end + 1;
if (start < page_end)
goto again;
}
The behavior is indeed necessary for the incoming subpage support, but
when it iterates through all the ordered extents, it also resets the
search range @start.
This means, for the following cases, we can double account the ordered
extents, causing its bytes_left underflow:
As the first iteration will find ordered extent (OE) 1, which doesn't
cover the full page, thus after cleanup code, we need to retry again.
But again label will reset start to page_start, and we got OE 1 again,
which causes double accounting on OE 1, and cause OE 1's byte_left to
underflow.
This problem can only happen for subpage case, as for regular sectorsize
== PAGE_SIZE case, we will always find a OE ends at or after page end,
thus no way to trigger the problem.
Move the again label after start = page_start. There will be more
comprehensive rework to convert the open coded loop to a proper while
loop for subpage support.
Fixes: 7d73d859e498 ("Btrfs: Search for all ordered extents that could span across a page") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Wed, 27 Jan 2021 15:05:41 +0000 (15:05 +0000)]
btrfs: remove wrong comment for can_nocow_extent()
The comment for can_nocow_extent() says that the function will flush
ordered extents, however that never happens and was never true before the
comment was added in commit a29e470cbdfe ("btrfs: add comments for
btrfs_check_can_nocow() and can_nocow_extent()"). This is true only for
the function btrfs_check_can_nocow(), which after that commit was renamed
to check_can_nocow(). So just remove that part of the comment.
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Josef Bacik [Fri, 9 Oct 2020 13:28:29 +0000 (09:28 -0400)]
btrfs: add a trace class for dumping the current ENOSPC state
Often when I'm debugging ENOSPC related issues I have to resort to
printing the entire ENOSPC state with trace_printk() in different spots.
This gets pretty annoying, so add a trace state that does this for us.
Then add a trace point at the end of preemptive flushing so you can see
the state of the space_info when we decide to exit preemptive flushing.
This helped me figure out we weren't kicking in the preemptive flushing
soon enough.
Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Josef Bacik [Fri, 9 Oct 2020 13:28:28 +0000 (09:28 -0400)]
btrfs: adjust the flush trace point to include the source
Since we have normal ticketed flushing and preemptive flushing, adjust
the tracepoint so that we know the source of the flushing action to make
it easier to debug problems.
Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Josef Bacik [Fri, 9 Oct 2020 13:28:27 +0000 (09:28 -0400)]
btrfs: implement space clamping for preemptive flushing
Starting preemptive flushing at 50% of available free space is a good
start, but some workloads are particularly abusive and can quickly
overwhelm the preemptive flushing code and drive us into using tickets.
Handle this by clamping down on our threshold for starting and
continuing to run preemptive flushing. This is particularly important
for our overcommit case, as we can really drive the file system into
overages and then it's more difficult to pull it back as we start to
actually fill up the file system.
The clamping is essentially 2^CLAMP, but we start at 1 so whatever we
calculate for overcommit is the baseline.
Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
Josef Bacik [Fri, 9 Oct 2020 13:28:26 +0000 (09:28 -0400)]
btrfs: simplify the logic in need_preemptive_flushing
A lot of this was added all in one go with no explanation, and is a bit
unwieldy and confusing. Simplify the logic to start preemptive flushing
if we've reserved more than half of our available free space.
Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>