* As a contrast, with implicit fencing the kernel keeps track of any
* ongoing rendering, and automatically ensures that the atomic update waits
* for any pending rendering to complete. For shared buffers represented with
- * a struct &dma_buf this is tracked in &reservation_object structures.
+ * a &struct dma_buf this is tracked in &reservation_object structures.
* Implicit syncing is how Linux traditionally worked (e.g. DRI2/3 on X.org),
* whereas explicit fencing is what Android wants.
*
* it will only check if the Sync File is a valid one.
*
* On the driver side the fence is stored on the @fence parameter of
- * struct &drm_plane_state. Drivers which also support implicit fencing
+ * &struct drm_plane_state. Drivers which also support implicit fencing
* should set the implicit fence using drm_atomic_set_fence_for_plane(),
* to make sure there's consistent behaviour between drivers in precedence
* of implicit vs. explicit fencing.
* DRM_MODE_ATOMIC_TEST_ONLY flag the out fence will also be set to -1.
*
* Note that out-fences don't have a special interface to drivers and are
- * internally represented by a struct &drm_pending_vblank_event in struct
+ * internally represented by a &struct drm_pending_vblank_event in struct
* &drm_crtc_state, which is also used by the nonblocking atomic commit
* helpers and for the DRM event handling for existing userspace.
*/
* implement these functions themselves but must use the provided helpers.
*
* The atomic helper uses the same function table structures as all other
- * modesetting helpers. See the documentation for struct &drm_crtc_helper_funcs,
- * struct &drm_encoder_helper_funcs and struct &drm_connector_helper_funcs. It
- * also shares the struct &drm_plane_helper_funcs function table with the plane
+ * modesetting helpers. See the documentation for &struct drm_crtc_helper_funcs,
+ * struct &drm_encoder_helper_funcs and &struct drm_connector_helper_funcs. It
+ * also shares the &struct drm_plane_helper_funcs function table with the plane
* helpers.
*/
static void
* actually committing the hardware state, and for nonblocking commits this call
* must be placed in the async worker. See also drm_atomic_helper_swap_state()
* and it's stall parameter, for when a driver's commit hooks look at the
- * ->state pointers of struct &drm_crtc, &drm_plane or &drm_connector directly.
+ * ->state pointers of &struct drm_crtc, &drm_plane or &drm_connector directly.
*
* Completion of the hardware commit step must be signalled using
* drm_atomic_helper_commit_hw_done(). After this step the driver is not allowed
/**
* DOC: master and authentication
*
- * struct &drm_master is used to track groups of clients with open
- * primary/legacy device nodes. For every struct &drm_file which has had at
+ * &struct drm_master is used to track groups of clients with open
+ * primary/legacy device nodes. For every &struct drm_file which has had at
* least once successfully became the device master (either through the
* SET_MASTER IOCTL, or implicitly through opening the primary device node when
* no one else is the current master that time) there exists one &drm_master.
/**
* drm_master_get - reference a master pointer
- * @master: struct &drm_master
+ * @master: &struct drm_master
*
* Increments the reference count of @master and returns a pointer to @master.
*/
/**
* drm_master_put - unreference and clear a master pointer
- * @master: pointer to a pointer of struct &drm_master
+ * @master: pointer to a pointer of &struct drm_master
*
* This decrements the &drm_master behind @master and sets it to NULL.
*/
/**
* DOC: overview
*
- * struct &drm_bridge represents a device that hangs on to an encoder. These are
+ * &struct drm_bridge represents a device that hangs on to an encoder. These are
* handy when a regular &drm_encoder entity isn't enough to represent the entire
* encoder chain.
*
* just provide additional hooks to get the desired output at the end of the
* encoder chain.
*
- * Bridges can also be chained up using the next pointer in struct &drm_bridge.
+ * Bridges can also be chained up using the next pointer in &struct drm_bridge.
*
* Both legacy CRTC helpers and the new atomic modeset helpers support bridges.
*/
* "DEGAMMA_LUT”:
* Blob property to set the degamma lookup table (LUT) mapping pixel data
* from the framebuffer before it is given to the transformation matrix.
- * The data is interpreted as an array of struct &drm_color_lut elements.
+ * The data is interpreted as an array of &struct drm_color_lut elements.
* Hardware might choose not to use the full precision of the LUT elements
* nor use all the elements of the LUT (for example the hardware might
* choose to interpolate between LUT[0] and LUT[4]).
* “GAMMA_LUT”:
* Blob property to set the gamma lookup table (LUT) mapping pixel data
* after the transformation matrix to data sent to the connector. The
- * data is interpreted as an array of struct &drm_color_lut elements.
+ * data is interpreted as an array of &struct drm_color_lut elements.
* Hardware might choose not to use the full precision of the LUT elements
* nor use all the elements of the LUT (for example the hardware might
* choose to interpolate between LUT[0] and LUT[4]).
* Connectors must be attached to an encoder to be used. For devices that map
* connectors to encoders 1:1, the connector should be attached at
* initialization time with a call to drm_mode_connector_attach_encoder(). The
- * driver must also set the struct &drm_connector encoder field to point to the
+ * driver must also set the &struct drm_connector encoder field to point to the
* attached encoder.
*
* For connectors which are not fixed (like built-in panels) the driver needs to
*
* These legacy modeset helpers use the same function table structures as
* all other modesetting helpers. See the documentation for struct
- * &drm_crtc_helper_funcs, struct &drm_encoder_helper_funcs and struct
+ * &drm_crtc_helper_funcs, &struct drm_encoder_helper_funcs and struct
* &drm_connector_helper_funcs.
*/
* @set: mode set configuration
*
* The drm_crtc_helper_set_config() helper function implements the set_config
- * callback of struct &drm_crtc_funcs for drivers using the legacy CRTC helpers.
+ * callback of &struct drm_crtc_funcs for drivers using the legacy CRTC helpers.
*
* It first tries to locate the best encoder for each connector by calling the
- * connector ->best_encoder() (struct &drm_connector_helper_funcs) helper
+ * connector ->best_encoder() (&struct drm_connector_helper_funcs) helper
* operation.
*
* After locating the appropriate encoders, the helper function will call the
*
* If the adjusted mode is identical to the current mode but changes to the
* frame buffer need to be applied, the drm_crtc_helper_set_config() function
- * will call the CRTC ->mode_set_base() (struct &drm_crtc_helper_funcs) helper
+ * will call the CRTC ->mode_set_base() (&struct drm_crtc_helper_funcs) helper
* operation.
*
* If the adjusted mode differs from the current mode, or if the
* performs a full mode set sequence by calling the ->prepare(), ->mode_set()
* and ->commit() CRTC and encoder helper operations, in that order.
* Alternatively it can also use the dpms and disable helper operations. For
- * details see struct &drm_crtc_helper_funcs and struct
+ * details see &struct drm_crtc_helper_funcs and struct
* &drm_encoder_helper_funcs.
*
* This function is deprecated. New drivers must implement atomic modeset
* @mode: DPMS mode
*
* The drm_helper_connector_dpms() helper function implements the ->dpms()
- * callback of struct &drm_connector_funcs for drivers using the legacy CRTC helpers.
+ * callback of &struct drm_connector_funcs for drivers using the legacy CRTC helpers.
*
* This is the main helper function provided by the CRTC helper framework for
* implementing the DPMS connector attribute. It computes the new desired DPMS
* state for all encoders and CRTCs in the output mesh and calls the ->dpms()
- * callbacks provided by the driver in struct &drm_crtc_helper_funcs and struct
+ * callbacks provided by the driver in &struct drm_crtc_helper_funcs and struct
* &drm_encoder_helper_funcs appropriately.
*
* This function is deprecated. New drivers must implement atomic modeset
/**
* DOC: driver instance overview
*
- * A device instance for a drm driver is represented by struct &drm_device. This
+ * A device instance for a drm driver is represented by &struct drm_device. This
* is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
* callbacks implemented by the driver. The driver then needs to initialize all
* the various subsystems for the drm device like memory management, vblank
* historical baggage. Hence use the reference counting provided by
* drm_dev_ref() and drm_dev_unref() only carefully.
*
- * It is recommended that drivers embed struct &drm_device into their own device
+ * It is recommended that drivers embed &struct drm_device into their own device
* structure, which is supported through drm_dev_init().
*/
* Note that for purely virtual devices @parent can be NULL.
*
* Drivers that do not want to allocate their own device struct
- * embedding struct &drm_device can call drm_dev_alloc() instead. For drivers
- * that do embed struct &drm_device it must be placed first in the overall
+ * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
+ * that do embed &struct drm_device it must be placed first in the overall
* structure, and the overall structure must be allocated using kmalloc(): The
* drm core's release function unconditionally calls kfree() on the @dev pointer
* when the final reference is released.
*
* Note that for purely virtual devices @parent can be NULL.
*
- * Drivers that wish to subclass or embed struct &drm_device into their
+ * Drivers that wish to subclass or embed &struct drm_device into their
* own struct should look at using drm_dev_init() instead.
*
* RETURNS:
* KMS frame buffers.
*
* To support dumb objects drivers must implement the dumb_create,
- * dumb_destroy and dumb_map_offset operations from struct &drm_driver. See
+ * dumb_destroy and dumb_map_offset operations from &struct drm_driver. See
* there for further details.
*
* Note that dumb objects may not be used for gpu acceleration, as has been
* DOC: overview
*
* Encoders represent the connecting element between the CRTC (as the overall
- * pixel pipeline, represented by struct &drm_crtc) and the connectors (as the
- * generic sink entity, represented by struct &drm_connector). An encoder takes
+ * pixel pipeline, represented by &struct drm_crtc) and the connectors (as the
+ * generic sink entity, represented by &struct drm_connector). An encoder takes
* pixel data from a CRTC and converts it to a format suitable for any attached
* connector. Encoders are objects exposed to userspace, originally to allow
* userspace to infer cloning and connector/CRTC restrictions. Unfortunately
* @plane: Which plane
* @state: Plane state attach fence to
*
- * This should be put into prepare_fb hook of struct &drm_plane_helper_funcs .
+ * This should be put into prepare_fb hook of &struct drm_plane_helper_funcs .
*
* This function checks if the plane FB has an dma-buf attached, extracts
* the exclusive fence and attaches it to plane state for the atomic helper
* Frame buffers rely on the underlying memory manager for allocating backing
* storage. When creating a frame buffer applications pass a memory handle
* (or a list of memory handles for multi-planar formats) through the
- * struct &drm_mode_fb_cmd2 argument. For drivers using GEM as their userspace
+ * &struct drm_mode_fb_cmd2 argument. For drivers using GEM as their userspace
* buffer management interface this would be a GEM handle. Drivers are however
* free to use their own backing storage object handles, e.g. vmwgfx directly
* exposes special TTM handles to userspace and so expects TTM handles in the
* create ioctl and not GEM handles.
*
- * Framebuffers are tracked with struct &drm_framebuffer. They are published
+ * Framebuffers are tracked with &struct drm_framebuffer. They are published
* using drm_framebuffer_init() - after calling that function userspace can use
* and access the framebuffer object. The helper function
* drm_helper_mode_fill_fb_struct() can be used to pre-fill the required
* drivers can grab additional references with drm_framebuffer_reference() and
* drop them again with drm_framebuffer_unreference(). For driver-private
* framebuffers for which the last reference is never dropped (e.g. for the
- * fbdev framebuffer when the struct struct &drm_framebuffer is embedded into
+ * fbdev framebuffer when the struct &struct drm_framebuffer is embedded into
* the fbdev helper struct) drivers can manually clean up a framebuffer at
* module unload time with drm_framebuffer_unregister_private(). But doing this
* is not recommended, and it's better to have a normal free-standing struct
* period. This helper function implements exactly the required vblank arming
* behaviour.
*
- * NOTE: Drivers using this to send out the event in struct &drm_crtc_state
+ * NOTE: Drivers using this to send out the event in &struct drm_crtc_state
* as part of an atomic commit must ensure that the next vblank happens at
* exactly the same time as the atomic commit is committed to the hardware. This
* function itself does **not** protect again the next vblank interrupt racing
* rotation or Z-position. All these properties are stored in &drm_plane_state.
*
* To create a plane, a KMS drivers allocates and zeroes an instances of
- * struct &drm_plane (possibly as part of a larger structure) and registers it
+ * &struct drm_plane (possibly as part of a larger structure) and registers it
* with a call to drm_universal_plane_init().
*
* Cursor and overlay planes are optional. All drivers should provide one
* Again drivers are strongly urged to switch to the new interfaces.
*
* The plane helpers share the function table structures with other helpers,
- * specifically also the atomic helpers. See struct &drm_plane_helper_funcs for
+ * specifically also the atomic helpers. See &struct drm_plane_helper_funcs for
* the details.
*/
* handling code to avoid probing unrelated outputs.
*
* The probe helpers share the function table structures with other display
- * helper libraries. See struct &drm_connector_helper_funcs for the details.
+ * helper libraries. See &struct drm_connector_helper_funcs for the details.
*/
static bool drm_kms_helper_poll = true;
* even the only way to transport metadata about the desired new modeset
* configuration from userspace to the kernel. Properties have a well-defined
* value range, which is enforced by the drm core. See the documentation of the
- * flags member of struct &drm_property for an overview of the different
+ * flags member of &struct drm_property for an overview of the different
* property types and ranges.
*
* Properties don't store the current value directly, but need to be
*
* drm_simple_display_pipe_init() initializes a simple display pipeline
* which has only one full-screen scanout buffer feeding one output. The
- * pipeline is represented by struct &drm_simple_display_pipe and binds
+ * pipeline is represented by &struct drm_simple_display_pipe and binds
* together &drm_plane, &drm_crtc and &drm_encoder structures into one fixed
* entity. Some flexibility for code reuse is provided through a separately
* allocated &drm_connector object and supporting optional &drm_bridge
* drm_atomic_crtc_needs_modeset - compute combined modeset need
* @state: &drm_crtc_state for the CRTC
*
- * To give drivers flexibility struct &drm_crtc_state has 3 booleans to track
+ * To give drivers flexibility &struct drm_crtc_state has 3 booleans to track
* whether the state CRTC changed enough to need a full modeset cycle:
* connectors_changed, mode_changed and active_changed. This helper simply
* combines these three to compute the overall need for a modeset for @state.
*/
char *unique;
/**
- * @unique_len: Length of unique field. Protected by struct &drm_device
+ * @unique_len: Length of unique field. Protected by &struct drm_device
* master_mutex.
*/
int unique_len;
* preceding element is a bridge this means it's called before that
* bridge's ->disable() function. If the preceding element is a
* &drm_encoder it's called right before the encoder's ->disable(),
- * ->prepare() or ->dpms() hook from struct &drm_encoder_helper_funcs.
+ * ->prepare() or ->dpms() hook from &struct drm_encoder_helper_funcs.
*
* The bridge can assume that the display pipe (i.e. clocks and timing
* signals) feeding it is still running when this callback is called.
* preceding element is a bridge this means it's called after that
* bridge's ->post_disable() function. If the preceding element is a
* &drm_encoder it's called right after the encoder's ->disable(),
- * ->prepare() or ->dpms() hook from struct &drm_encoder_helper_funcs.
+ * ->prepare() or ->dpms() hook from &struct drm_encoder_helper_funcs.
*
* The bridge must assume that the display pipe (i.e. clocks and timing
* singals) feeding it is no longer running when this callback is
* preceding element is a bridge this means it's called before that
* bridge's ->pre_enable() function. If the preceding element is a
* &drm_encoder it's called right before the encoder's ->enable(),
- * ->commit() or ->dpms() hook from struct &drm_encoder_helper_funcs.
+ * ->commit() or ->dpms() hook from &struct drm_encoder_helper_funcs.
*
* The display pipe (i.e. clocks and timing signals) feeding this bridge
* will not yet be running when this callback is called. The bridge must
* preceding element is a bridge this means it's called after that
* bridge's ->enable() function. If the preceding element is a
* &drm_encoder it's called right after the encoder's ->enable(),
- * ->commit() or ->dpms() hook from struct &drm_encoder_helper_funcs.
+ * ->commit() or ->dpms() hook from &struct drm_encoder_helper_funcs.
*
* The bridge can assume that the display pipe (i.e. clocks and timing
* signals) feeding it is running when this callback is called. This
*
* Describes a given display (e.g. CRT or flat panel) and its limitations. For
* fixed display sinks like built-in panels there's not much difference between
- * this and struct &drm_connector. But for sinks with a real cable this
+ * this and &struct drm_connector. But for sinks with a real cable this
* structure is meant to describe all the things at the other end of the cable.
*
* For sinks which provide an EDID this can be filled out by calling
* &drm_mode_config_funcs) will be cleaned up by calling the
* @atomic_destroy_state hook in this structure.
*
- * Atomic drivers which don't subclass struct &drm_connector_state should use
+ * Atomic drivers which don't subclass &struct drm_connector_state should use
* drm_atomic_helper_connector_duplicate_state(). Drivers that subclass the
* state structure to extend it with driver-private state should use
* __drm_atomic_helper_connector_duplicate_state() to make sure shared state is
/**
* @atomic_print_state:
*
- * If driver subclasses struct &drm_connector_state, it should implement
+ * If driver subclasses &struct drm_connector_state, it should implement
* this optional hook for printing additional driver specific state.
*
* Do not call this directly, use drm_atomic_connector_print_state()
/**
* drm_for_each_connector_iter - connector_list iterator macro
- * @connector: struct &drm_connector pointer used as cursor
- * @iter: struct &drm_connector_list_iter
+ * @connector: &struct drm_connector pointer used as cursor
+ * @iter: &struct drm_connector_list_iter
*
* Note that @connector is only valid within the list body, if you want to use
* @connector after calling drm_connector_list_iter_put() then you need to grab
*
* This is the main legacy entry point to change the modeset state on a
* CRTC. All the details of the desired configuration are passed in a
- * struct &drm_mode_set - see there for details.
+ * &struct drm_mode_set - see there for details.
*
* Drivers implementing atomic modeset should use
* drm_atomic_helper_set_config() to implement this hook.
* shared dma-buf.
*
* An application can request to be notified when the page flip has
- * completed. The drm core will supply a struct &drm_event in the event
+ * completed. The drm core will supply a &struct drm_event in the event
* parameter in this case. This can be handled by the
* drm_crtc_send_vblank_event() function, which the driver should call on
* the provided event upon completion of the flip. Note that if
* &drm_mode_config_funcs) will be cleaned up by calling the
* @atomic_destroy_state hook in this structure.
*
- * Atomic drivers which don't subclass struct &drm_crtc should use
+ * Atomic drivers which don't subclass &struct drm_crtc should use
* drm_atomic_helper_crtc_duplicate_state(). Drivers that subclass the
* state structure to extend it with driver-private state should use
* __drm_atomic_helper_crtc_duplicate_state() to make sure shared state is
/**
* @atomic_print_state:
*
- * If driver subclasses struct &drm_crtc_state, it should implement
+ * If driver subclasses &struct drm_crtc_state, it should implement
* this optional hook for printing additional driver specific state.
*
* Do not call this directly, use drm_atomic_crtc_print_state()
*
* This is the main structure used by the fbdev helpers. Drivers supporting
* fbdev emulation should embedded this into their overall driver structure.
- * Drivers must also fill out a struct &drm_fb_helper_funcs with a few
+ * Drivers must also fill out a &struct drm_fb_helper_funcs with a few
* operations.
*/
struct drm_fb_helper {
* @create_handle:
*
* Create a buffer handle in the driver-specific buffer manager (either
- * GEM or TTM) valid for the passed-in struct &drm_file. This is used by
+ * GEM or TTM) valid for the passed-in &struct drm_file. This is used by
* the core to implement the GETFB IOCTL, which returns (for
* sufficiently priviledged user) also a native buffer handle. This can
* be used for seamless transitions between modesetting clients by
*
* This should not be used to specifiy x/y pixel offsets into the buffer
* data (even for linear buffers). Specifying an x/y pixel offset is
- * instead done through the source rectangle in struct &drm_plane_state.
+ * instead done through the source rectangle in &struct drm_plane_state.
*/
unsigned int offsets[4];
/**
*/
int hot_y;
/**
- * @filp_head: Placed on struct &drm_file fbs list_head, protected by
+ * @filp_head: Placed on &struct drm_file fbs list_head, protected by
* fbs_lock in the same structure.
*/
struct list_head filp_head;
*
* Note that for historical reasons - the vblank handling code is still shared
* with legacy/non-kms drivers - this is a free-standing structure not directly
- * connected to struct &drm_crtc. But all public interface functions are taking
- * a struct &drm_crtc to hide this implementation detail.
+ * connected to &struct drm_crtc. But all public interface functions are taking
+ * a &struct drm_crtc to hide this implementation detail.
*/
struct drm_vblank_crtc {
/**
*
* Create a new framebuffer object. The core does basic checks on the
* requested metadata, but most of that is left to the driver. See
- * struct &drm_mode_fb_cmd2 for details.
+ * &struct drm_mode_fb_cmd2 for details.
*
* If the parameters are deemed valid and the backing storage objects in
* the underlying memory manager all exist, then the driver allocates
* error conditions which don't have to be checked at the
* ->atomic_check() stage?
*
- * See the documentation for struct &drm_atomic_state for how exactly
+ * See the documentation for &struct drm_atomic_state for how exactly
* an atomic modeset update is described.
*
* Drivers using the atomic helpers can implement this hook using
* calling this function, and that nothing has been changed in the
* interim.
*
- * See the documentation for struct &drm_atomic_state for how exactly
+ * See the documentation for &struct drm_atomic_state for how exactly
* an atomic modeset update is described.
*
* Drivers using the atomic helpers can implement this hook using
* completed. These events are per-CRTC and can be distinguished by the
* CRTC index supplied in &drm_event to userspace.
*
- * The drm core will supply a struct &drm_event in the event
+ * The drm core will supply a &struct drm_event in the event
* member of each CRTC's &drm_crtc_state structure. See the
* documentation for &drm_crtc_state for more details about the precise
* semantics of this event.
/**
* @connector_list: List of connector objects. Protected by
* @connector_list_lock. Only use drm_for_each_connector_iter() and
- * struct &drm_connector_list_iter to walk this list.
+ * &struct drm_connector_list_iter to walk this list.
*/
struct list_head connector_list;
int num_encoder;
* fixed panel can also manually add specific modes using
* drm_mode_probed_add(). Drivers which manually add modes should also
* make sure that the @display_info, @width_mm and @height_mm fields of the
- * struct &drm_connector are filled in.
+ * &struct drm_connector are filled in.
*
* Virtual drivers that just want some standard VESA mode with a given
* resolution can call drm_add_modes_noedid(), and mark the preferred
* &drm_mode_config_funcs) will be cleaned up by calling the
* @atomic_destroy_state hook in this structure.
*
- * Atomic drivers which don't subclass struct &drm_plane_state should use
+ * Atomic drivers which don't subclass &struct drm_plane_state should use
* drm_atomic_helper_plane_duplicate_state(). Drivers that subclass the
* state structure to extend it with driver-private state should use
* __drm_atomic_helper_plane_duplicate_state() to make sure shared state is
/**
* @atomic_print_state:
*
- * If driver subclasses struct &drm_plane_state, it should implement
+ * If driver subclasses &struct drm_plane_state, it should implement
* this optional hook for printing additional driver specific state.
*
* Do not call this directly, use drm_atomic_plane_print_state()
/**
* drm_seq_file_printer - construct a &drm_printer that outputs to &seq_file
- * @f: the struct &seq_file to output to
+ * @f: the &struct seq_file to output to
*
* RETURNS:
* The &drm_printer object
/**
* drm_info_printer - construct a &drm_printer that outputs to dev_printk()
- * @dev: the struct &device pointer
+ * @dev: the &struct device pointer
*
* RETURNS:
* The &drm_printer object
/**
* @prepare_fb:
*
- * Optional, called by struct &drm_plane_helper_funcs ->prepare_fb .
+ * Optional, called by &struct drm_plane_helper_funcs ->prepare_fb .
* Please read the documentation for the ->prepare_fb hook in
- * struct &drm_plane_helper_funcs for more details.
+ * &struct drm_plane_helper_funcs for more details.
*/
int (*prepare_fb)(struct drm_simple_display_pipe *pipe,
struct drm_plane_state *plane_state);
/**
* @cleanup_fb:
*
- * Optional, called by struct &drm_plane_helper_funcs ->cleanup_fb .
+ * Optional, called by &struct drm_plane_helper_funcs ->cleanup_fb .
* Please read the documentation for the ->cleanup_fb hook in
- * struct &drm_plane_helper_funcs for more details.
+ * &struct drm_plane_helper_funcs for more details.
*/
void (*cleanup_fb)(struct drm_simple_display_pipe *pipe,
struct drm_plane_state *plane_state);