fix some typos and code style problems in mm.
gfp.h: s/MAXNODES/MAX_NUMNODES
mmzone.h: s/then/than
rmap.c: s/__vma_split()/__vma_adjust()
swap.c: s/__mod_zone_page_stat/__mod_zone_page_state, s/is is/is
swap_state.c: s/whoes/whose
z3fold.c: code style problem fix in z3fold_unregister_migration
zsmalloc.c: s/of/or, s/give/given
Link: https://lkml.kernel.org/r/20210419083057.64820-1-luoshijie1@huawei.com
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/*
* We get the zone list from the current node and the gfp_mask.
- * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
+ * This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
* There are two zonelists per node, one for all zones with memory and
* one containing just zones from the node the zonelist belongs to.
*
* pageblocks to MIGRATE_CMA which can be done by
* __free_pageblock_cma() function. What is important though
* is that a range of pageblocks must be aligned to
- * MAX_ORDER_NR_PAGES should biggest page be bigger then
+ * MAX_ORDER_NR_PAGES should biggest page be bigger than
* a single pageblock.
*/
MIGRATE_CMA,
* Attach the anon_vmas from src to dst.
* Returns 0 on success, -ENOMEM on failure.
*
- * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
+ * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
* anon_vma_fork(). The first three want an exact copy of src, while the last
* one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
* endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
int nr_pages = thp_nr_pages(page);
/*
- * We use the irq-unsafe __mod_zone_page_stat because this
+ * We use the irq-unsafe __mod_zone_page_state because this
* counter is not modified from interrupt context, and the pte
* lock is held(spinlock), which implies preemption disabled.
*/
* below which drains the page vectors.
*
* Let x, y, and z represent some system CPU numbers, where x < y < z.
- * Assume CPU #z is is in the middle of the for_each_online_cpu loop
+ * Assume CPU #z is in the middle of the for_each_online_cpu loop
* below and has already reached CPU #y's per-cpu data. CPU #x comes
* along, adds some pages to its per-cpu vectors, then calls
* lru_add_drain_all().
*
* Returns the struct page for entry and addr, after queueing swapin.
*
- * Primitive swap readahead code. We simply read in a few pages whoes
+ * Primitive swap readahead code. We simply read in a few pages whose
* virtual addresses are around the fault address in the same vma.
*
* Caller must hold read mmap_lock if vmf->vma is not NULL.
{
if (pool->inode)
iput(pool->inode);
- }
+}
/* Initializes the z3fold header of a newly allocated z3fold page */
static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
#define ZSPAGE_MAGIC 0x58
/*
- * This must be power of 2 and greater than of equal to sizeof(link_free).
+ * This must be power of 2 and greater than or equal to sizeof(link_free).
* These two conditions ensure that any 'struct link_free' itself doesn't
* span more than 1 page which avoids complex case of mapping 2 pages simply
* to restore link_free pointer values.
* class maintains a list of zspages where each zspage is divided
* into equal sized chunks. Each allocation falls into one of these
* classes depending on its size. This function returns index of the
- * size class which has chunk size big enough to hold the give size.
+ * size class which has chunk size big enough to hold the given size.
*/
static int get_size_class_index(int size)
{