/**
* drm_fb_xrgb8888_to_mono - Convert XRGB8888 to monochrome
- * @dst: monochrome destination buffer (0=black, 1=white)
- * @dst_pitch: Number of bytes between two consecutive scanlines within dst
- * @vaddr: XRGB8888 source buffer
+ * @dst: Array of monochrome destination buffers (0=black, 1=white)
+ * @dst_pitch: Array of numbers of bytes between the start of two consecutive scanlines
+ * within @dst; can be NULL if scanlines are stored next to each other.
+ * @vmap: Array of XRGB8888 source buffers
* @fb: DRM framebuffer
* @clip: Clip rectangle area to copy
*
- * DRM doesn't have native monochrome support.
- * Such drivers can announce the commonly supported XR24 format to userspace
- * and use this function to convert to the native format.
+ * This function copies parts of a framebuffer to display memory and converts the
+ * color format during the process. Destination and framebuffer formats must match. The
+ * parameters @dst, @dst_pitch and @vmap refer to arrays. Each array must have at
+ * least as many entries as there are planes in @fb's format. Each entry stores the
+ * value for the format's respective color plane at the same index.
+ *
+ * This function does not apply clipping on @dst (i.e. the destination is at the
+ * top-left corner). The first pixel (upper left corner of the clip rectangle) will
+ * be converted and copied to the first bit (LSB) in the first byte of the monochrome
+ * destination buffer. If the caller requires that the first pixel in a byte must
+ * be located at an x-coordinate that is a multiple of 8, then the caller must take
+ * care itself of supplying a suitable clip rectangle.
+ *
+ * DRM doesn't have native monochrome support. Drivers can use this function for
+ * monochrome devices that don't support XRGB8888 natively. Such drivers can
+ * announce the commonly supported XR24 format to userspace and use this function
+ * to convert to the native format.
*
* This function uses drm_fb_xrgb8888_to_gray8() to convert to grayscale and
* then the result is converted from grayscale to monochrome.
- *
- * The first pixel (upper left corner of the clip rectangle) will be converted
- * and copied to the first bit (LSB) in the first byte of the monochrome
- * destination buffer.
- * If the caller requires that the first pixel in a byte must be located at an
- * x-coordinate that is a multiple of 8, then the caller must take care itself
- * of supplying a suitable clip rectangle.
*/
-void drm_fb_xrgb8888_to_mono(void *dst, unsigned int dst_pitch, const void *vaddr,
- const struct drm_framebuffer *fb, const struct drm_rect *clip)
+void drm_fb_xrgb8888_to_mono(struct iosys_map *dst, const unsigned int *dst_pitch,
+ const struct iosys_map *vmap, const struct drm_framebuffer *fb,
+ const struct drm_rect *clip)
{
+ static const unsigned int default_dst_pitch[DRM_FORMAT_MAX_PLANES] = {
+ 0, 0, 0, 0
+ };
unsigned int linepixels = drm_rect_width(clip);
unsigned int lines = drm_rect_height(clip);
unsigned int cpp = fb->format->cpp[0];
unsigned int len_src32 = linepixels * cpp;
struct drm_device *dev = fb->dev;
+ void *vaddr = vmap[0].vaddr;
+ unsigned int dst_pitch_0;
unsigned int y;
- u8 *mono = dst, *gray8;
+ u8 *mono = dst[0].vaddr, *gray8;
u32 *src32;
if (drm_WARN_ON(dev, fb->format->format != DRM_FORMAT_XRGB8888))
return;
+ if (!dst_pitch)
+ dst_pitch = default_dst_pitch;
+ dst_pitch_0 = dst_pitch[0];
+
/*
* The mono destination buffer contains 1 bit per pixel
*/
- if (!dst_pitch)
- dst_pitch = DIV_ROUND_UP(linepixels, 8);
+ if (!dst_pitch_0)
+ dst_pitch_0 = DIV_ROUND_UP(linepixels, 8);
/*
* The dma memory is write-combined so reads are uncached.
drm_fb_xrgb8888_to_gray8_line(gray8, src32, linepixels);
drm_fb_gray8_to_mono_line(mono, gray8, linepixels);
vaddr += fb->pitches[0];
- mono += dst_pitch;
+ mono += dst_pitch_0;
}
kfree(src32);
kfree(buf);
}
-static int ssd130x_fb_blit_rect(struct drm_framebuffer *fb, const struct iosys_map *map,
+static int ssd130x_fb_blit_rect(struct drm_framebuffer *fb, const struct iosys_map *vmap,
struct drm_rect *rect)
{
struct ssd130x_device *ssd130x = drm_to_ssd130x(fb->dev);
- void *vmap = map->vaddr; /* TODO: Use mapping abstraction properly */
+ struct iosys_map dst;
unsigned int dst_pitch;
int ret = 0;
u8 *buf = NULL;
if (!buf)
return -ENOMEM;
- drm_fb_xrgb8888_to_mono(buf, dst_pitch, vmap, fb, rect);
+ iosys_map_set_vaddr(&dst, buf);
+ drm_fb_xrgb8888_to_mono(&dst, &dst_pitch, vmap, fb, rect);
ssd130x_update_rect(ssd130x, buf, rect);
{
struct drm_gem_dma_object *dma_obj = drm_fb_dma_get_gem_obj(fb, 0);
struct repaper_epd *epd = drm_to_epd(fb->dev);
+ unsigned int dst_pitch = 0;
+ struct iosys_map dst, vmap;
struct drm_rect clip;
int idx, ret = 0;
u8 *buf = NULL;
if (ret)
goto out_free;
- drm_fb_xrgb8888_to_mono(buf, 0, dma_obj->vaddr, fb, &clip);
+ iosys_map_set_vaddr(&dst, buf);
+ iosys_map_set_vaddr(&vmap, dma_obj->vaddr);
+ drm_fb_xrgb8888_to_mono(&dst, &dst_pitch, &vmap, fb, &clip);
drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE);