-obj-y += bypass.o clk.o pll.o
+obj-y += bypass.o clk.o
/*
* Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
*/
-#include <kendryte/clk.h>
+#define LOG_CATEGORY UCLASS_CLK
#include <common.h>
-#include <dt-bindings/clock/k210-sysctl.h>
-#include <dt-bindings/mfd/k210-sysctl.h>
+#include <clk.h>
+#include <clk-uclass.h>
+#include <div64.h>
#include <dm.h>
#include <log.h>
#include <mapmem.h>
-
-#include <kendryte/bypass.h>
+#include <serial.h>
+#include <dt-bindings/clock/k210-sysctl.h>
+#include <dt-bindings/mfd/k210-sysctl.h>
#include <kendryte/pll.h>
+#include <linux/bitfield.h>
+
+/**
+ * struct k210_clk_priv - K210 clock driver private data
+ * @base: The base address of the sysctl device
+ * @in0: The "in0" external oscillator
+ */
+struct k210_clk_priv {
+ void __iomem *base;
+ struct clk in0;
+};
/*
* All parameters for different sub-clocks are collected into parameter arrays.
#undef MUX
#undef MUX_LIST
+/**
+ * struct k210_pll_params - K210 PLL parameters
+ * @off: The offset of the PLL from the base sysctl address
+ * @shift: The offset of the LSB of the lock status
+ * @width: The number of bits in the lock status
+ */
+struct k210_pll_params {
+ u8 off;
+ u8 shift;
+ u8 width;
+};
+
+static const struct k210_pll_params k210_plls[] = {
+#define PLL(_off, _shift, _width) { \
+ .off = (_off), \
+ .shift = (_shift), \
+ .width = (_width), \
+}
+ [0] = PLL(K210_SYSCTL_PLL0, 0, 2),
+ [1] = PLL(K210_SYSCTL_PLL1, 8, 1),
+ [2] = PLL(K210_SYSCTL_PLL2, 16, 1),
+#undef PLL
+};
+
/**
* enum k210_clk_flags - The type of a K210 clock
* @K210_CLKF_MUX: This clock has a mux and not a static parent
};
};
-
static const struct k210_clk_params k210_clks[] = {
#if CONFIG_IS_ENABLED(CMD_CLK)
#define NAME(_name) .name = (_name),
#undef CLK_LIST
};
+#define K210_PLL_CLKR GENMASK(3, 0)
+#define K210_PLL_CLKF GENMASK(9, 4)
+#define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */
+#define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */
+#define K210_PLL_RESET BIT(20)
+#define K210_PLL_PWRD BIT(21) /* PoWeReD */
+#define K210_PLL_INTFB BIT(22) /* Internal FeedBack */
+#define K210_PLL_BYPASS BIT(23)
+#define K210_PLL_TEST BIT(24)
+#define K210_PLL_EN BIT(25)
+#define K210_PLL_TEST_EN BIT(26)
+
+#define K210_PLL_LOCK 0
+#define K210_PLL_CLEAR_SLIP 2
+#define K210_PLL_TEST_OUT 3
+
+#ifdef CONFIG_CLK_K210_SET_RATE
+static int k210_pll_enable(struct k210_clk_priv *priv, int id);
+static int k210_pll_disable(struct k210_clk_priv *priv, int id);
+static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in);
+
+/*
+ * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
+ * General-Purpose PLL. The logical layout of the PLL with internal feedback is
+ * approximately the following:
+ *
+ * +---------------+
+ * |reference clock|
+ * +---------------+
+ * |
+ * v
+ * +--+
+ * |/r|
+ * +--+
+ * |
+ * v
+ * +-------------+
+ * |divided clock|
+ * +-------------+
+ * |
+ * v
+ * +--------------+
+ * |phase detector|<---+
+ * +--------------+ |
+ * | |
+ * v +--------------+
+ * +---+ |feedback clock|
+ * |VCO| +--------------+
+ * +---+ ^
+ * | +--+ |
+ * +--->|/f|---+
+ * | +--+
+ * v
+ * +---+
+ * |/od|
+ * +---+
+ * |
+ * v
+ * +------+
+ * |output|
+ * +------+
+ *
+ * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
+ * the effect of the division by f is to multiply the input frequency. The
+ * equation for the output rate is
+ * rate = (rate_in * f) / (r * od).
+ * Moving knowns to one side of the equation, we get
+ * rate / rate_in = f / (r * od)
+ * Rearranging slightly,
+ * abs_error = abs((rate / rate_in) - (f / (r * od))).
+ * To get relative, error, we divide by the expected ratio
+ * error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
+ * Simplifying,
+ * error = abs(1 - f / (r * od)) / (rate / rate_in)
+ * error = abs(1 - (f * rate_in) / (r * od * rate))
+ * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
+ * error = abs((f * inv_ratio) / (r * od) - 1)
+ * This is the error used in evaluating parameters.
+ *
+ * r and od are four bits each, while f is six bits. Because r and od are
+ * multiplied together, instead of the full 256 values possible if both bits
+ * were used fully, there are only 97 distinct products. Combined with f, there
+ * are 6208 theoretical settings for the PLL. However, most of these settings
+ * can be ruled out immediately because they do not have the correct ratio.
+ *
+ * In addition to the constraint of approximating the desired ratio, parameters
+ * must also keep internal pll frequencies within acceptable ranges. The divided
+ * clock's minimum and maximum frequencies have a ratio of around 128. This
+ * leaves fairly substantial room to work with, especially since the only
+ * affected parameter is r. The VCO's minimum and maximum frequency have a ratio
+ * of 5, which is considerably more restrictive.
+ *
+ * The r and od factors are stored in a table. This is to make it easy to find
+ * the next-largest product. Some products have multiple factorizations, but
+ * only when one factor has at least a 2.5x ratio to the factors of the other
+ * factorization. This is because any smaller ratio would not make a difference
+ * when ensuring the VCO's frequency is within spec.
+ *
+ * Throughout the calculation function, fixed point arithmetic is used. Because
+ * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
+ * 32.32 fixed-point numbers are used to represent ratios. In general, to
+ * implement division, the numerator is first multiplied by 2^32. This gives a
+ * result where the whole number part is in the upper 32 bits, and the fraction
+ * is in the lower 32 bits.
+ *
+ * In general, rounding is done to the closest integer. This helps find the best
+ * approximation for the ratio. Rounding in one direction (e.g down) could cause
+ * the function to miss a better ratio with one of the parameters increased by
+ * one.
+ */
+
+/*
+ * The factors table was generated with the following python code:
+ *
+ * def p(x, y):
+ * return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
+ *
+ * factors = {}
+ * for i in range(1, 17):
+ * for j in range(1, 17):
+ * fs = factors.get(i*j) or []
+ * if fs == [] or all([
+ * (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
+ * for (x, y) in fs]):
+ * fs.append((i, j))
+ * factors[i*j] = fs
+ *
+ * for k, l in sorted(factors.items()):
+ * for v in l:
+ * print("PACK(%s, %s)," % v)
+ */
+#define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF))
+#define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1)
+#define UNPACK_OD(val) (((val) & 0xF) + 1)
+static const u8 factors[] = {
+ PACK(1, 1),
+ PACK(1, 2),
+ PACK(1, 3),
+ PACK(1, 4),
+ PACK(1, 5),
+ PACK(1, 6),
+ PACK(1, 7),
+ PACK(1, 8),
+ PACK(1, 9),
+ PACK(3, 3),
+ PACK(1, 10),
+ PACK(1, 11),
+ PACK(1, 12),
+ PACK(3, 4),
+ PACK(1, 13),
+ PACK(1, 14),
+ PACK(1, 15),
+ PACK(3, 5),
+ PACK(1, 16),
+ PACK(4, 4),
+ PACK(2, 9),
+ PACK(2, 10),
+ PACK(3, 7),
+ PACK(2, 11),
+ PACK(2, 12),
+ PACK(5, 5),
+ PACK(2, 13),
+ PACK(3, 9),
+ PACK(2, 14),
+ PACK(2, 15),
+ PACK(2, 16),
+ PACK(3, 11),
+ PACK(5, 7),
+ PACK(3, 12),
+ PACK(3, 13),
+ PACK(4, 10),
+ PACK(3, 14),
+ PACK(4, 11),
+ PACK(3, 15),
+ PACK(3, 16),
+ PACK(7, 7),
+ PACK(5, 10),
+ PACK(4, 13),
+ PACK(6, 9),
+ PACK(5, 11),
+ PACK(4, 14),
+ PACK(4, 15),
+ PACK(7, 9),
+ PACK(4, 16),
+ PACK(5, 13),
+ PACK(6, 11),
+ PACK(5, 14),
+ PACK(6, 12),
+ PACK(5, 15),
+ PACK(7, 11),
+ PACK(6, 13),
+ PACK(5, 16),
+ PACK(9, 9),
+ PACK(6, 14),
+ PACK(8, 11),
+ PACK(6, 15),
+ PACK(7, 13),
+ PACK(6, 16),
+ PACK(7, 14),
+ PACK(9, 11),
+ PACK(10, 10),
+ PACK(8, 13),
+ PACK(7, 15),
+ PACK(9, 12),
+ PACK(10, 11),
+ PACK(7, 16),
+ PACK(9, 13),
+ PACK(8, 15),
+ PACK(11, 11),
+ PACK(9, 14),
+ PACK(8, 16),
+ PACK(10, 13),
+ PACK(11, 12),
+ PACK(9, 15),
+ PACK(10, 14),
+ PACK(11, 13),
+ PACK(9, 16),
+ PACK(10, 15),
+ PACK(11, 14),
+ PACK(12, 13),
+ PACK(10, 16),
+ PACK(11, 15),
+ PACK(12, 14),
+ PACK(13, 13),
+ PACK(11, 16),
+ PACK(12, 15),
+ PACK(13, 14),
+ PACK(12, 16),
+ PACK(13, 15),
+ PACK(14, 14),
+ PACK(13, 16),
+ PACK(14, 15),
+ PACK(14, 16),
+ PACK(15, 15),
+ PACK(15, 16),
+ PACK(16, 16),
+};
+
+TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
+ struct k210_pll_config *best)
+{
+ int i;
+ s64 error, best_error;
+ u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */
+ u64 max_r;
+ u64 r, f, od;
+
+ /*
+ * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
+ * VCO frequency. These are not the same limits as below because od can
+ * reduce the output frequency by 16.
+ */
+ if (rate > 1750000000 || rate < 21250000)
+ return -EINVAL;
+
+ /* Similar restrictions on the input rate */
+ if (rate_in > 1750000000 || rate_in < 13300000)
+ return -EINVAL;
+
+ ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in);
+ inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
+ /* Can't increase by more than 64 or reduce by more than 256 */
+ if (rate > rate_in && ratio > (64ULL << 32))
+ return -EINVAL;
+ else if (rate <= rate_in && inv_ratio > (256ULL << 32))
+ return -EINVAL;
+
+ /*
+ * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3
+ * MHz. There is no minimum, since the only way to get a higher input
+ * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
+ * cannot output frequencies greater than 1.75 GHz, the minimum would
+ * never be greater than one.
+ */
+ max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000);
+
+ /* Variables get immediately incremented, so start at -1th iteration */
+ i = -1;
+ f = 0;
+ r = 0;
+ od = 0;
+ best_error = S64_MAX;
+ error = best_error;
+ /* do-while here so we always try at least one ratio */
+ do {
+ /*
+ * Whether we swapped r and od while enforcing frequency limits
+ */
+ bool swapped = false;
+ u64 last_od = od;
+ u64 last_r = r;
+
+ /*
+ * Try the next largest value for f (or r and od) and
+ * recalculate the other parameters based on that
+ */
+ if (rate > rate_in) {
+ /*
+ * Skip factors of the same product if we already tried
+ * out that product
+ */
+ do {
+ i++;
+ r = UNPACK_R(factors[i]);
+ od = UNPACK_OD(factors[i]);
+ } while (i + 1 < ARRAY_SIZE(factors) &&
+ r * od == last_r * last_od);
+
+ /* Round close */
+ f = (r * od * ratio + BIT(31)) >> 32;
+ if (f > 64)
+ f = 64;
+ } else {
+ u64 tmp = ++f * inv_ratio;
+ bool round_up = !!(tmp & BIT(31));
+ u32 goal = (tmp >> 32) + round_up;
+ u32 err, last_err;
+
+ /* Get the next r/od pair in factors */
+ while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) {
+ i++;
+ r = UNPACK_R(factors[i]);
+ od = UNPACK_OD(factors[i]);
+ }
+
+ /*
+ * This is a case of double rounding. If we rounded up
+ * above, we need to round down (in cases of ties) here.
+ * This prevents off-by-one errors resulting from
+ * choosing X+2 over X when X.Y rounds up to X+1 and
+ * there is no r * od = X+1. For the converse, when X.Y
+ * is rounded down to X, we should choose X+1 over X-1.
+ */
+ err = abs(r * od - goal);
+ last_err = abs(last_r * last_od - goal);
+ if (last_err < err || (round_up && last_err == err)) {
+ i--;
+ r = last_r;
+ od = last_od;
+ }
+ }
+
+ /*
+ * Enforce limits on internal clock frequencies. If we
+ * aren't in spec, try swapping r and od. If everything is
+ * in-spec, calculate the relative error.
+ */
+ while (true) {
+ /*
+ * Whether the intermediate frequencies are out-of-spec
+ */
+ bool out_of_spec = false;
+
+ if (r > max_r) {
+ out_of_spec = true;
+ } else {
+ /*
+ * There is no way to only divide once; we need
+ * to examine the frequency with and without the
+ * effect of od.
+ */
+ u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);
+
+ if (vco > 1750000000 || vco < 340000000)
+ out_of_spec = true;
+ }
+
+ if (out_of_spec) {
+ if (!swapped) {
+ u64 tmp = r;
+
+ r = od;
+ od = tmp;
+ swapped = true;
+ continue;
+ } else {
+ /*
+ * Try looking ahead to see if there are
+ * additional factors for the same
+ * product.
+ */
+ if (i + 1 < ARRAY_SIZE(factors)) {
+ u64 new_r, new_od;
+
+ i++;
+ new_r = UNPACK_R(factors[i]);
+ new_od = UNPACK_OD(factors[i]);
+ if (r * od == new_r * new_od) {
+ r = new_r;
+ od = new_od;
+ swapped = false;
+ continue;
+ }
+ i--;
+ }
+ break;
+ }
+ }
+
+ error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od);
+ /* The lower 16 bits are spurious */
+ error = abs((error - BIT(32))) >> 16;
+
+ if (error < best_error) {
+ best->r = r;
+ best->f = f;
+ best->od = od;
+ best_error = error;
+ }
+ break;
+ }
+ } while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0);
+
+ if (best_error == S64_MAX)
+ return -EINVAL;
+
+ log_debug("best error %lld\n", best_error);
+ return 0;
+}
+
+static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
+ ulong rate_in)
+{
+ int err;
+ const struct k210_pll_params *pll = &k210_plls[id];
+ struct k210_pll_config config = {};
+ u32 reg;
+
+ if (rate_in < 0)
+ return rate_in;
+
+ log_debug("Calculating parameters with rate=%lu and rate_in=%lu\n",
+ rate, rate_in);
+ err = k210_pll_calc_config(rate, rate_in, &config);
+ if (err)
+ return err;
+ log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od);
+
+ /*
+ * Don't use clk_disable as it might not actually disable the pll due to
+ * refcounting
+ */
+ k210_pll_disable(priv, id);
+
+ reg = readl(priv->base + pll->off);
+ reg &= ~K210_PLL_CLKR
+ & ~K210_PLL_CLKF
+ & ~K210_PLL_CLKOD
+ & ~K210_PLL_BWADJ;
+ reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1)
+ | FIELD_PREP(K210_PLL_CLKF, config.f - 1)
+ | FIELD_PREP(K210_PLL_CLKOD, config.od - 1)
+ | FIELD_PREP(K210_PLL_BWADJ, config.f - 1);
+ writel(reg, priv->base + pll->off);
+
+ err = k210_pll_enable(priv, id);
+
+ serial_setbrg();
+ return k210_pll_get_rate(priv, id, rate);
+}
+#else
+static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
+ ulong rate_in)
+{
+ return -ENOSYS;
+}
+#endif /* CONFIG_CLK_K210_SET_RATE */
+
+static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id,
+ ulong rate_in)
+{
+ u64 r, f, od;
+ u32 reg = readl(priv->base + k210_plls[id].off);
+
+ if (rate_in < 0 || (reg & K210_PLL_BYPASS))
+ return rate_in;
+
+ if (!(reg & K210_PLL_PWRD))
+ return 0;
+
+ r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
+ f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
+ od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;
+
+ return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od);
+}
+
+/*
+ * Wait for the PLL to be locked. If the PLL is not locked, try clearing the
+ * slip before retrying
+ */
+static void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id)
+{
+ const struct k210_pll_params *pll = &k210_plls[id];
+ u32 mask = (BIT(pll->width) - 1) << pll->shift;
+
+ while (true) {
+ u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK);
+
+ if ((reg & mask) == mask)
+ break;
+
+ reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP);
+ writel(reg, priv->base + K210_SYSCTL_PLL_LOCK);
+ }
+}
+
+/* Adapted from sysctl_pll_enable */
+static int k210_pll_enable(struct k210_clk_priv *priv, int id)
+{
+ const struct k210_pll_params *pll = &k210_plls[id];
+ u32 reg = readl(priv->base + pll->off);
+
+ if ((reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) &&
+ !(reg & K210_PLL_RESET))
+ return 0;
+
+ reg |= K210_PLL_PWRD;
+ writel(reg, priv->base + pll->off);
+
+ /* Ensure reset is low before asserting it */
+ reg &= ~K210_PLL_RESET;
+ writel(reg, priv->base + pll->off);
+ reg |= K210_PLL_RESET;
+ writel(reg, priv->base + pll->off);
+ nop();
+ nop();
+ reg &= ~K210_PLL_RESET;
+ writel(reg, priv->base + pll->off);
+
+ k210_pll_waitfor_lock(priv, id);
+
+ reg &= ~K210_PLL_BYPASS;
+ reg |= K210_PLL_EN;
+ writel(reg, priv->base + pll->off);
+
+ return 0;
+}
+
+static int k210_pll_disable(struct k210_clk_priv *priv, int id)
+{
+ const struct k210_pll_params *pll = &k210_plls[id];
+ u32 reg = readl(priv->base + pll->off);
+
+ /*
+ * Bypassing before powering off is important so child clocks don't stop
+ * working. This is especially important for pll0, the indirect parent
+ * of the cpu clock.
+ */
+ reg |= K210_PLL_BYPASS;
+ writel(reg, priv->base + pll->off);
+
+ reg &= ~K210_PLL_PWRD;
+ reg &= ~K210_PLL_EN;
+ writel(reg, priv->base + pll->off);
+ return 0;
+}
+
static u32 k210_clk_readl(struct k210_clk_priv *priv, u8 off, u8 shift,
u8 width)
{
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0+
-/*
- * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
- */
-#define LOG_CATEGORY UCLASS_CLK
-
-#include <common.h>
-#include <dm.h>
-/* For DIV_ROUND_DOWN_ULL, defined in linux/kernel.h */
-#include <div64.h>
-#include <log.h>
-#include <serial.h>
-#include <asm/io.h>
-#include <dt-bindings/clock/k210-sysctl.h>
-#include <dt-bindings/mfd/k210-sysctl.h>
-#include <kendryte/pll.h>
-#include <linux/bitfield.h>
-#include <linux/clk-provider.h>
-#include <linux/delay.h>
-#include <linux/err.h>
-
-/**
- * struct k210_pll_params - K210 PLL parameters
- * @off: The offset of the PLL from the base sysctl address
- * @shift: The offset of the LSB of the lock status
- * @width: The number of bits in the lock status
- */
-struct k210_pll_params {
- u8 off;
- u8 shift;
- u8 width;
-};
-
-static const struct k210_pll_params k210_plls[] = {
-#define PLL(_off, _shift, _width) { \
- .off = (_off), \
- .shift = (_shift), \
- .width = (_width), \
-}
- [0] = PLL(K210_SYSCTL_PLL0, 0, 2),
- [1] = PLL(K210_SYSCTL_PLL1, 8, 1),
- [2] = PLL(K210_SYSCTL_PLL2, 16, 1),
-#undef PLL
-};
-
-#ifdef CONFIG_CLK_K210_SET_RATE
-int k210_pll_enable(struct k210_clk_priv *priv, int id);
-int k210_pll_disable(struct k210_clk_priv *priv, int id);
-ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in);
-
-/*
- * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
- * General-Purpose PLL. The logical layout of the PLL with internal feedback is
- * approximately the following:
- *
- * +---------------+
- * |reference clock|
- * +---------------+
- * |
- * v
- * +--+
- * |/r|
- * +--+
- * |
- * v
- * +-------------+
- * |divided clock|
- * +-------------+
- * |
- * v
- * +--------------+
- * |phase detector|<---+
- * +--------------+ |
- * | |
- * v +--------------+
- * +---+ |feedback clock|
- * |VCO| +--------------+
- * +---+ ^
- * | +--+ |
- * +--->|/f|---+
- * | +--+
- * v
- * +---+
- * |/od|
- * +---+
- * |
- * v
- * +------+
- * |output|
- * +------+
- *
- * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
- * the effect of the division by f is to multiply the input frequency. The
- * equation for the output rate is
- * rate = (rate_in * f) / (r * od).
- * Moving knowns to one side of the equation, we get
- * rate / rate_in = f / (r * od)
- * Rearranging slightly,
- * abs_error = abs((rate / rate_in) - (f / (r * od))).
- * To get relative, error, we divide by the expected ratio
- * error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
- * Simplifying,
- * error = abs(1 - f / (r * od)) / (rate / rate_in)
- * error = abs(1 - (f * rate_in) / (r * od * rate))
- * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
- * error = abs((f * inv_ratio) / (r * od) - 1)
- * This is the error used in evaluating parameters.
- *
- * r and od are four bits each, while f is six bits. Because r and od are
- * multiplied together, instead of the full 256 values possible if both bits
- * were used fully, there are only 97 distinct products. Combined with f, there
- * are 6208 theoretical settings for the PLL. However, most of these settings
- * can be ruled out immediately because they do not have the correct ratio.
- *
- * In addition to the constraint of approximating the desired ratio, parameters
- * must also keep internal pll frequencies within acceptable ranges. The divided
- * clock's minimum and maximum frequencies have a ratio of around 128. This
- * leaves fairly substantial room to work with, especially since the only
- * affected parameter is r. The VCO's minimum and maximum frequency have a ratio
- * of 5, which is considerably more restrictive.
- *
- * The r and od factors are stored in a table. This is to make it easy to find
- * the next-largest product. Some products have multiple factorizations, but
- * only when one factor has at least a 2.5x ratio to the factors of the other
- * factorization. This is because any smaller ratio would not make a difference
- * when ensuring the VCO's frequency is within spec.
- *
- * Throughout the calculation function, fixed point arithmetic is used. Because
- * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
- * 32.32 fixed-point numbers are used to represent ratios. In general, to
- * implement division, the numerator is first multiplied by 2^32. This gives a
- * result where the whole number part is in the upper 32 bits, and the fraction
- * is in the lower 32 bits.
- *
- * In general, rounding is done to the closest integer. This helps find the best
- * approximation for the ratio. Rounding in one direction (e.g down) could cause
- * the function to miss a better ratio with one of the parameters increased by
- * one.
- */
-
-/*
- * The factors table was generated with the following python code:
- *
- * def p(x, y):
- * return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
- *
- * factors = {}
- * for i in range(1, 17):
- * for j in range(1, 17):
- * fs = factors.get(i*j) or []
- * if fs == [] or all([
- * (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
- * for (x, y) in fs]):
- * fs.append((i, j))
- * factors[i*j] = fs
- *
- * for k, l in sorted(factors.items()):
- * for v in l:
- * print("PACK(%s, %s)," % v)
- */
-#define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF))
-#define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1)
-#define UNPACK_OD(val) (((val) & 0xF) + 1)
-static const u8 factors[] = {
- PACK(1, 1),
- PACK(1, 2),
- PACK(1, 3),
- PACK(1, 4),
- PACK(1, 5),
- PACK(1, 6),
- PACK(1, 7),
- PACK(1, 8),
- PACK(1, 9),
- PACK(3, 3),
- PACK(1, 10),
- PACK(1, 11),
- PACK(1, 12),
- PACK(3, 4),
- PACK(1, 13),
- PACK(1, 14),
- PACK(1, 15),
- PACK(3, 5),
- PACK(1, 16),
- PACK(4, 4),
- PACK(2, 9),
- PACK(2, 10),
- PACK(3, 7),
- PACK(2, 11),
- PACK(2, 12),
- PACK(5, 5),
- PACK(2, 13),
- PACK(3, 9),
- PACK(2, 14),
- PACK(2, 15),
- PACK(2, 16),
- PACK(3, 11),
- PACK(5, 7),
- PACK(3, 12),
- PACK(3, 13),
- PACK(4, 10),
- PACK(3, 14),
- PACK(4, 11),
- PACK(3, 15),
- PACK(3, 16),
- PACK(7, 7),
- PACK(5, 10),
- PACK(4, 13),
- PACK(6, 9),
- PACK(5, 11),
- PACK(4, 14),
- PACK(4, 15),
- PACK(7, 9),
- PACK(4, 16),
- PACK(5, 13),
- PACK(6, 11),
- PACK(5, 14),
- PACK(6, 12),
- PACK(5, 15),
- PACK(7, 11),
- PACK(6, 13),
- PACK(5, 16),
- PACK(9, 9),
- PACK(6, 14),
- PACK(8, 11),
- PACK(6, 15),
- PACK(7, 13),
- PACK(6, 16),
- PACK(7, 14),
- PACK(9, 11),
- PACK(10, 10),
- PACK(8, 13),
- PACK(7, 15),
- PACK(9, 12),
- PACK(10, 11),
- PACK(7, 16),
- PACK(9, 13),
- PACK(8, 15),
- PACK(11, 11),
- PACK(9, 14),
- PACK(8, 16),
- PACK(10, 13),
- PACK(11, 12),
- PACK(9, 15),
- PACK(10, 14),
- PACK(11, 13),
- PACK(9, 16),
- PACK(10, 15),
- PACK(11, 14),
- PACK(12, 13),
- PACK(10, 16),
- PACK(11, 15),
- PACK(12, 14),
- PACK(13, 13),
- PACK(11, 16),
- PACK(12, 15),
- PACK(13, 14),
- PACK(12, 16),
- PACK(13, 15),
- PACK(14, 14),
- PACK(13, 16),
- PACK(14, 15),
- PACK(14, 16),
- PACK(15, 15),
- PACK(15, 16),
- PACK(16, 16),
-};
-
-TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
- struct k210_pll_config *best)
-{
- int i;
- s64 error, best_error;
- u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */
- u64 max_r;
- u64 r, f, od;
-
- /*
- * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
- * VCO frequency. These are not the same limits as below because od can
- * reduce the output frequency by 16.
- */
- if (rate > 1750000000 || rate < 21250000)
- return -EINVAL;
-
- /* Similar restrictions on the input rate */
- if (rate_in > 1750000000 || rate_in < 13300000)
- return -EINVAL;
-
- ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in);
- inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
- /* Can't increase by more than 64 or reduce by more than 256 */
- if (rate > rate_in && ratio > (64ULL << 32))
- return -EINVAL;
- else if (rate <= rate_in && inv_ratio > (256ULL << 32))
- return -EINVAL;
-
- /*
- * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3
- * MHz. There is no minimum, since the only way to get a higher input
- * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
- * cannot output frequencies greater than 1.75 GHz, the minimum would
- * never be greater than one.
- */
- max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000);
-
- /* Variables get immediately incremented, so start at -1th iteration */
- i = -1;
- f = 0;
- r = 0;
- od = 0;
- best_error = S64_MAX;
- error = best_error;
- /* do-while here so we always try at least one ratio */
- do {
- /*
- * Whether we swapped r and od while enforcing frequency limits
- */
- bool swapped = false;
- u64 last_od = od;
- u64 last_r = r;
-
- /*
- * Try the next largest value for f (or r and od) and
- * recalculate the other parameters based on that
- */
- if (rate > rate_in) {
- /*
- * Skip factors of the same product if we already tried
- * out that product
- */
- do {
- i++;
- r = UNPACK_R(factors[i]);
- od = UNPACK_OD(factors[i]);
- } while (i + 1 < ARRAY_SIZE(factors) &&
- r * od == last_r * last_od);
-
- /* Round close */
- f = (r * od * ratio + BIT(31)) >> 32;
- if (f > 64)
- f = 64;
- } else {
- u64 tmp = ++f * inv_ratio;
- bool round_up = !!(tmp & BIT(31));
- u32 goal = (tmp >> 32) + round_up;
- u32 err, last_err;
-
- /* Get the next r/od pair in factors */
- while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) {
- i++;
- r = UNPACK_R(factors[i]);
- od = UNPACK_OD(factors[i]);
- }
-
- /*
- * This is a case of double rounding. If we rounded up
- * above, we need to round down (in cases of ties) here.
- * This prevents off-by-one errors resulting from
- * choosing X+2 over X when X.Y rounds up to X+1 and
- * there is no r * od = X+1. For the converse, when X.Y
- * is rounded down to X, we should choose X+1 over X-1.
- */
- err = abs(r * od - goal);
- last_err = abs(last_r * last_od - goal);
- if (last_err < err || (round_up && last_err == err)) {
- i--;
- r = last_r;
- od = last_od;
- }
- }
-
- /*
- * Enforce limits on internal clock frequencies. If we
- * aren't in spec, try swapping r and od. If everything is
- * in-spec, calculate the relative error.
- */
- while (true) {
- /*
- * Whether the intermediate frequencies are out-of-spec
- */
- bool out_of_spec = false;
-
- if (r > max_r) {
- out_of_spec = true;
- } else {
- /*
- * There is no way to only divide once; we need
- * to examine the frequency with and without the
- * effect of od.
- */
- u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);
-
- if (vco > 1750000000 || vco < 340000000)
- out_of_spec = true;
- }
-
- if (out_of_spec) {
- if (!swapped) {
- u64 tmp = r;
-
- r = od;
- od = tmp;
- swapped = true;
- continue;
- } else {
- /*
- * Try looking ahead to see if there are
- * additional factors for the same
- * product.
- */
- if (i + 1 < ARRAY_SIZE(factors)) {
- u64 new_r, new_od;
-
- i++;
- new_r = UNPACK_R(factors[i]);
- new_od = UNPACK_OD(factors[i]);
- if (r * od == new_r * new_od) {
- r = new_r;
- od = new_od;
- swapped = false;
- continue;
- }
- i--;
- }
- break;
- }
- }
-
- error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od);
- /* The lower 16 bits are spurious */
- error = abs((error - BIT(32))) >> 16;
-
- if (error < best_error) {
- best->r = r;
- best->f = f;
- best->od = od;
- best_error = error;
- }
- break;
- }
- } while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0);
-
- if (best_error == S64_MAX)
- return -EINVAL;
-
- log_debug("best error %lld\n", best_error);
- return 0;
-}
-
-static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
- ulong rate_in)
-{
- int err;
- const struct k210_pll_params *pll = &k210_plls[id];
- struct k210_pll_config config = {};
- u32 reg;
-
- if (rate_in < 0)
- return rate_in;
-
- log_debug("Calculating parameters with rate=%lu and rate_in=%lld\n",
- rate, rate_in);
- err = k210_pll_calc_config(rate, rate_in, &config);
- if (err)
- return err;
- log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od);
-
- /*
- * Don't use clk_disable as it might not actually disable the pll due to
- * refcounting
- */
- k210_pll_disable(clk);
-
- reg = readl(priv->base + pll->off);
- reg &= ~K210_PLL_CLKR
- & ~K210_PLL_CLKF
- & ~K210_PLL_CLKOD
- & ~K210_PLL_BWADJ;
- reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1)
- | FIELD_PREP(K210_PLL_CLKF, config.f - 1)
- | FIELD_PREP(K210_PLL_CLKOD, config.od - 1)
- | FIELD_PREP(K210_PLL_BWADJ, config.f - 1);
- writel(reg, priv->base + pll->off);
-
- err = k210_pll_enable(clk);
- if (err)
- return err;
-
- serial_setbrg();
- return clk_get_rate(clk);
-}
-#else
-ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
- ulong rate_in)
-{
- return -ENOSYS;
-}
-#endif /* CONFIG_CLK_K210_SET_RATE */
-
-ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in)
-{
- u64 r, f, od;
- u32 reg = readl(priv->base + k210_plls[id].off);
-
- if (rate_in < 0 || (reg & K210_PLL_BYPASS))
- return rate_in;
-
- if (!(reg & K210_PLL_PWRD))
- return 0;
-
- r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
- f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
- od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;
-
- return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od);
-}
-
-/*
- * Wait for the PLL to be locked. If the PLL is not locked, try clearing the
- * slip before retrying
- */
-void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id)
-{
- const struct k210_pll_params *pll = &k210_plls[id];
- u32 mask = GENMASK(pll->width - 1, 0) << pll->shift;
-
- while (true) {
- u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK);
-
- if ((reg & mask) == mask)
- break;
-
- reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP);
- writel(reg, priv->base + K210_SYSCTL_PLL_LOCK);
- }
-}
-
-/* Adapted from sysctl_pll_enable */
-int k210_pll_enable(struct k210_clk_priv *priv, int id)
-{
- const struct k210_pll_params *pll = &k210_plls[id];
- u32 reg = readl(priv->base + pll->off);
-
- if ((reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) &&
- !(reg & K210_PLL_RESET))
- return 0;
-
- reg |= K210_PLL_PWRD;
- writel(reg, priv->base + pll->off);
-
- /* Ensure reset is low before asserting it */
- reg &= ~K210_PLL_RESET;
- writel(reg, priv->base + pll->off);
- reg |= K210_PLL_RESET;
- writel(reg, priv->base + pll->off);
- nop();
- nop();
- reg &= ~K210_PLL_RESET;
- writel(reg, priv->base + pll->off);
-
- k210_pll_waitfor_lock(priv, id);
-
- reg &= ~K210_PLL_BYPASS;
- reg |= K210_PLL_EN;
- writel(reg, priv->base + pll->off);
-
- return 0;
-}
-
-int k210_pll_disable(struct k210_clk_priv *priv, int id)
-{
- const struct k210_pll_params *pll = &k210_plls[id];
- u32 reg = readl(priv->base + pll->off);
-
- /*
- * Bypassing before powering off is important so child clocks don't stop
- * working. This is especially important for pll0, the indirect parent
- * of the cpu clock.
- */
- reg |= K210_PLL_BYPASS;
- writel(reg, priv->base + pll->off);
-
- reg &= ~K210_PLL_PWRD;
- reg &= ~K210_PLL_EN;
- writel(reg, priv->base + pll->off);
- return 0;
-}
+++ /dev/null
-/* SPDX-License-Identifier: GPL-2.0+ */
-/*
- * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
- */
-
-#ifndef K210_CLK_H
-#define K210_CLK_H
-
-#define LOG_CATEGORY UCLASS_CLK
-#include <linux/types.h>
-#include <linux/clk-provider.h>
-
-static inline struct clk *k210_clk_gate(const char *name,
- const char *parent_name,
- void __iomem *reg, u8 bit_idx)
-{
- return clk_register_gate(NULL, name, parent_name, 0, reg, bit_idx, 0,
- NULL);
-}
-
-static inline struct clk *k210_clk_half(const char *name,
- const char *parent_name)
-{
- return clk_register_fixed_factor(NULL, name, parent_name, 0, 1, 2);
-}
-
-static inline struct clk *k210_clk_div(const char *name,
- const char *parent_name,
- void __iomem *reg, u8 shift, u8 width)
-{
- return clk_register_divider(NULL, name, parent_name, 0, reg, shift,
- width, 0);
-}
-
-#endif /* K210_CLK_H */
#ifndef K210_PLL_H
#define K210_PLL_H
-#include <clk.h>
#include <test/export.h>
-#include <asm/io.h>
-
-#define K210_PLL_CLKR GENMASK(3, 0)
-#define K210_PLL_CLKF GENMASK(9, 4)
-#define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */
-#define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */
-#define K210_PLL_RESET BIT(20)
-#define K210_PLL_PWRD BIT(21) /* PoWeReD */
-#define K210_PLL_INTFB BIT(22) /* Internal FeedBack */
-#define K210_PLL_BYPASS BIT(23)
-#define K210_PLL_TEST BIT(24)
-#define K210_PLL_EN BIT(25)
-#define K210_PLL_TEST_EN BIT(26)
-
-#define K210_PLL_LOCK 0
-#define K210_PLL_CLEAR_SLIP 2
-#define K210_PLL_TEST_OUT 3
struct k210_pll_config {
u8 r;
#ifdef CONFIG_UNIT_TEST
TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
struct k210_pll_config *best);
-
#ifndef nop
#define nop()
#endif
#endif
-
-/**
- * struct k210_clk_priv - K210 clock driver private data
- * @base: The base address of the sysctl device
- * @in0: The "in0" external oscillator
- */
-struct k210_clk_priv {
- void __iomem *base;
- struct clk in0;
-};
-
-ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate, ulong rate_in);
-ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in);
-int k210_pll_enable(struct k210_clk_priv *priv, int id);
-int k210_pll_disable(struct k210_clk_priv *priv, int id);
#endif /* K210_PLL_H */