+++ /dev/null
-==========================================================
-How to access I/O mapped memory from within device drivers
-==========================================================
-
-:Author: Linus
-
-.. warning::
-
- The virt_to_bus() and bus_to_virt() functions have been
- superseded by the functionality provided by the PCI DMA interface
- (see :doc:`/core-api/dma-api-howto`). They continue
- to be documented below for historical purposes, but new code
- must not use them. --davidm 00/12/12
-
-::
-
- [ This is a mail message in response to a query on IO mapping, thus the
- strange format for a "document" ]
-
-The AHA-1542 is a bus-master device, and your patch makes the driver give the
-controller the physical address of the buffers, which is correct on x86
-(because all bus master devices see the physical memory mappings directly).
-
-However, on many setups, there are actually **three** different ways of looking
-at memory addresses, and in this case we actually want the third, the
-so-called "bus address".
-
-Essentially, the three ways of addressing memory are (this is "real memory",
-that is, normal RAM--see later about other details):
-
- - CPU untranslated. This is the "physical" address. Physical address
- 0 is what the CPU sees when it drives zeroes on the memory bus.
-
- - CPU translated address. This is the "virtual" address, and is
- completely internal to the CPU itself with the CPU doing the appropriate
- translations into "CPU untranslated".
-
- - bus address. This is the address of memory as seen by OTHER devices,
- not the CPU. Now, in theory there could be many different bus
- addresses, with each device seeing memory in some device-specific way, but
- happily most hardware designers aren't actually actively trying to make
- things any more complex than necessary, so you can assume that all
- external hardware sees the memory the same way.
-
-Now, on normal PCs the bus address is exactly the same as the physical
-address, and things are very simple indeed. However, they are that simple
-because the memory and the devices share the same address space, and that is
-not generally necessarily true on other PCI/ISA setups.
-
-Now, just as an example, on the PReP (PowerPC Reference Platform), the
-CPU sees a memory map something like this (this is from memory)::
-
- 0-2 GB "real memory"
- 2 GB-3 GB "system IO" (inb/out and similar accesses on x86)
- 3 GB-4 GB "IO memory" (shared memory over the IO bus)
-
-Now, that looks simple enough. However, when you look at the same thing from
-the viewpoint of the devices, you have the reverse, and the physical memory
-address 0 actually shows up as address 2 GB for any IO master.
-
-So when the CPU wants any bus master to write to physical memory 0, it
-has to give the master address 0x80000000 as the memory address.
-
-So, for example, depending on how the kernel is actually mapped on the
-PPC, you can end up with a setup like this::
-
- physical address: 0
- virtual address: 0xC0000000
- bus address: 0x80000000
-
-where all the addresses actually point to the same thing. It's just seen
-through different translations..
-
-Similarly, on the Alpha, the normal translation is::
-
- physical address: 0
- virtual address: 0xfffffc0000000000
- bus address: 0x40000000
-
-(but there are also Alphas where the physical address and the bus address
-are the same).
-
-Anyway, the way to look up all these translations, you do::
-
- #include <asm/io.h>
-
- phys_addr = virt_to_phys(virt_addr);
- virt_addr = phys_to_virt(phys_addr);
- bus_addr = virt_to_bus(virt_addr);
- virt_addr = bus_to_virt(bus_addr);
-
-Now, when do you need these?
-
-You want the **virtual** address when you are actually going to access that
-pointer from the kernel. So you can have something like this::
-
- /*
- * this is the hardware "mailbox" we use to communicate with
- * the controller. The controller sees this directly.
- */
- struct mailbox {
- __u32 status;
- __u32 bufstart;
- __u32 buflen;
- ..
- } mbox;
-
- unsigned char * retbuffer;
-
- /* get the address from the controller */
- retbuffer = bus_to_virt(mbox.bufstart);
- switch (retbuffer[0]) {
- case STATUS_OK:
- ...
-
-on the other hand, you want the bus address when you have a buffer that
-you want to give to the controller::
-
- /* ask the controller to read the sense status into "sense_buffer" */
- mbox.bufstart = virt_to_bus(&sense_buffer);
- mbox.buflen = sizeof(sense_buffer);
- mbox.status = 0;
- notify_controller(&mbox);
-
-And you generally **never** want to use the physical address, because you can't
-use that from the CPU (the CPU only uses translated virtual addresses), and
-you can't use it from the bus master.
-
-So why do we care about the physical address at all? We do need the physical
-address in some cases, it's just not very often in normal code. The physical
-address is needed if you use memory mappings, for example, because the
-"remap_pfn_range()" mm function wants the physical address of the memory to
-be remapped as measured in units of pages, a.k.a. the pfn (the memory
-management layer doesn't know about devices outside the CPU, so it
-shouldn't need to know about "bus addresses" etc).
-
-.. note::
-
- The above is only one part of the whole equation. The above
- only talks about "real memory", that is, CPU memory (RAM).
-
-There is a completely different type of memory too, and that's the "shared
-memory" on the PCI or ISA bus. That's generally not RAM (although in the case
-of a video graphics card it can be normal DRAM that is just used for a frame
-buffer), but can be things like a packet buffer in a network card etc.
-
-This memory is called "PCI memory" or "shared memory" or "IO memory" or
-whatever, and there is only one way to access it: the readb/writeb and
-related functions. You should never take the address of such memory, because
-there is really nothing you can do with such an address: it's not
-conceptually in the same memory space as "real memory" at all, so you cannot
-just dereference a pointer. (Sadly, on x86 it **is** in the same memory space,
-so on x86 it actually works to just deference a pointer, but it's not
-portable).
-
-For such memory, you can do things like:
-
- - reading::
-
- /*
- * read first 32 bits from ISA memory at 0xC0000, aka
- * C000:0000 in DOS terms
- */
- unsigned int signature = isa_readl(0xC0000);
-
- - remapping and writing::
-
- /*
- * remap framebuffer PCI memory area at 0xFC000000,
- * size 1MB, so that we can access it: We can directly
- * access only the 640k-1MB area, so anything else
- * has to be remapped.
- */
- void __iomem *baseptr = ioremap(0xFC000000, 1024*1024);
-
- /* write a 'A' to the offset 10 of the area */
- writeb('A',baseptr+10);
-
- /* unmap when we unload the driver */
- iounmap(baseptr);
-
- - copying and clearing::
-
- /* get the 6-byte Ethernet address at ISA address E000:0040 */
- memcpy_fromio(kernel_buffer, 0xE0040, 6);
- /* write a packet to the driver */
- memcpy_toio(0xE1000, skb->data, skb->len);
- /* clear the frame buffer */
- memset_io(0xA0000, 0, 0x10000);
-
-OK, that just about covers the basics of accessing IO portably. Questions?
-Comments? You may think that all the above is overly complex, but one day you
-might find yourself with a 500 MHz Alpha in front of you, and then you'll be
-happy that your driver works ;)
-
-Note that kernel versions 2.0.x (and earlier) mistakenly called the
-ioremap() function "vremap()". ioremap() is the proper name, but I
-didn't think straight when I wrote it originally. People who have to
-support both can do something like::
-
- /* support old naming silliness */
- #if LINUX_VERSION_CODE < 0x020100
- #define ioremap vremap
- #define iounmap vfree
- #endif
-
-at the top of their source files, and then they can use the right names
-even on 2.0.x systems.
-
-And the above sounds worse than it really is. Most real drivers really
-don't do all that complex things (or rather: the complexity is not so
-much in the actual IO accesses as in error handling and timeouts etc).
-It's generally not hard to fix drivers, and in many cases the code
-actually looks better afterwards::
-
- unsigned long signature = *(unsigned int *) 0xC0000;
- vs
- unsigned long signature = readl(0xC0000);
-
-I think the second version actually is more readable, no?
--- /dev/null
+==========================================================
+How to access I/O mapped memory from within device drivers
+==========================================================
+
+:Author: Linus
+
+.. warning::
+
+ The virt_to_bus() and bus_to_virt() functions have been
+ superseded by the functionality provided by the PCI DMA interface
+ (see :doc:`/core-api/dma-api-howto`). They continue
+ to be documented below for historical purposes, but new code
+ must not use them. --davidm 00/12/12
+
+::
+
+ [ This is a mail message in response to a query on IO mapping, thus the
+ strange format for a "document" ]
+
+The AHA-1542 is a bus-master device, and your patch makes the driver give the
+controller the physical address of the buffers, which is correct on x86
+(because all bus master devices see the physical memory mappings directly).
+
+However, on many setups, there are actually **three** different ways of looking
+at memory addresses, and in this case we actually want the third, the
+so-called "bus address".
+
+Essentially, the three ways of addressing memory are (this is "real memory",
+that is, normal RAM--see later about other details):
+
+ - CPU untranslated. This is the "physical" address. Physical address
+ 0 is what the CPU sees when it drives zeroes on the memory bus.
+
+ - CPU translated address. This is the "virtual" address, and is
+ completely internal to the CPU itself with the CPU doing the appropriate
+ translations into "CPU untranslated".
+
+ - bus address. This is the address of memory as seen by OTHER devices,
+ not the CPU. Now, in theory there could be many different bus
+ addresses, with each device seeing memory in some device-specific way, but
+ happily most hardware designers aren't actually actively trying to make
+ things any more complex than necessary, so you can assume that all
+ external hardware sees the memory the same way.
+
+Now, on normal PCs the bus address is exactly the same as the physical
+address, and things are very simple indeed. However, they are that simple
+because the memory and the devices share the same address space, and that is
+not generally necessarily true on other PCI/ISA setups.
+
+Now, just as an example, on the PReP (PowerPC Reference Platform), the
+CPU sees a memory map something like this (this is from memory)::
+
+ 0-2 GB "real memory"
+ 2 GB-3 GB "system IO" (inb/out and similar accesses on x86)
+ 3 GB-4 GB "IO memory" (shared memory over the IO bus)
+
+Now, that looks simple enough. However, when you look at the same thing from
+the viewpoint of the devices, you have the reverse, and the physical memory
+address 0 actually shows up as address 2 GB for any IO master.
+
+So when the CPU wants any bus master to write to physical memory 0, it
+has to give the master address 0x80000000 as the memory address.
+
+So, for example, depending on how the kernel is actually mapped on the
+PPC, you can end up with a setup like this::
+
+ physical address: 0
+ virtual address: 0xC0000000
+ bus address: 0x80000000
+
+where all the addresses actually point to the same thing. It's just seen
+through different translations..
+
+Similarly, on the Alpha, the normal translation is::
+
+ physical address: 0
+ virtual address: 0xfffffc0000000000
+ bus address: 0x40000000
+
+(but there are also Alphas where the physical address and the bus address
+are the same).
+
+Anyway, the way to look up all these translations, you do::
+
+ #include <asm/io.h>
+
+ phys_addr = virt_to_phys(virt_addr);
+ virt_addr = phys_to_virt(phys_addr);
+ bus_addr = virt_to_bus(virt_addr);
+ virt_addr = bus_to_virt(bus_addr);
+
+Now, when do you need these?
+
+You want the **virtual** address when you are actually going to access that
+pointer from the kernel. So you can have something like this::
+
+ /*
+ * this is the hardware "mailbox" we use to communicate with
+ * the controller. The controller sees this directly.
+ */
+ struct mailbox {
+ __u32 status;
+ __u32 bufstart;
+ __u32 buflen;
+ ..
+ } mbox;
+
+ unsigned char * retbuffer;
+
+ /* get the address from the controller */
+ retbuffer = bus_to_virt(mbox.bufstart);
+ switch (retbuffer[0]) {
+ case STATUS_OK:
+ ...
+
+on the other hand, you want the bus address when you have a buffer that
+you want to give to the controller::
+
+ /* ask the controller to read the sense status into "sense_buffer" */
+ mbox.bufstart = virt_to_bus(&sense_buffer);
+ mbox.buflen = sizeof(sense_buffer);
+ mbox.status = 0;
+ notify_controller(&mbox);
+
+And you generally **never** want to use the physical address, because you can't
+use that from the CPU (the CPU only uses translated virtual addresses), and
+you can't use it from the bus master.
+
+So why do we care about the physical address at all? We do need the physical
+address in some cases, it's just not very often in normal code. The physical
+address is needed if you use memory mappings, for example, because the
+"remap_pfn_range()" mm function wants the physical address of the memory to
+be remapped as measured in units of pages, a.k.a. the pfn (the memory
+management layer doesn't know about devices outside the CPU, so it
+shouldn't need to know about "bus addresses" etc).
+
+.. note::
+
+ The above is only one part of the whole equation. The above
+ only talks about "real memory", that is, CPU memory (RAM).
+
+There is a completely different type of memory too, and that's the "shared
+memory" on the PCI or ISA bus. That's generally not RAM (although in the case
+of a video graphics card it can be normal DRAM that is just used for a frame
+buffer), but can be things like a packet buffer in a network card etc.
+
+This memory is called "PCI memory" or "shared memory" or "IO memory" or
+whatever, and there is only one way to access it: the readb/writeb and
+related functions. You should never take the address of such memory, because
+there is really nothing you can do with such an address: it's not
+conceptually in the same memory space as "real memory" at all, so you cannot
+just dereference a pointer. (Sadly, on x86 it **is** in the same memory space,
+so on x86 it actually works to just deference a pointer, but it's not
+portable).
+
+For such memory, you can do things like:
+
+ - reading::
+
+ /*
+ * read first 32 bits from ISA memory at 0xC0000, aka
+ * C000:0000 in DOS terms
+ */
+ unsigned int signature = isa_readl(0xC0000);
+
+ - remapping and writing::
+
+ /*
+ * remap framebuffer PCI memory area at 0xFC000000,
+ * size 1MB, so that we can access it: We can directly
+ * access only the 640k-1MB area, so anything else
+ * has to be remapped.
+ */
+ void __iomem *baseptr = ioremap(0xFC000000, 1024*1024);
+
+ /* write a 'A' to the offset 10 of the area */
+ writeb('A',baseptr+10);
+
+ /* unmap when we unload the driver */
+ iounmap(baseptr);
+
+ - copying and clearing::
+
+ /* get the 6-byte Ethernet address at ISA address E000:0040 */
+ memcpy_fromio(kernel_buffer, 0xE0040, 6);
+ /* write a packet to the driver */
+ memcpy_toio(0xE1000, skb->data, skb->len);
+ /* clear the frame buffer */
+ memset_io(0xA0000, 0, 0x10000);
+
+OK, that just about covers the basics of accessing IO portably. Questions?
+Comments? You may think that all the above is overly complex, but one day you
+might find yourself with a 500 MHz Alpha in front of you, and then you'll be
+happy that your driver works ;)
+
+Note that kernel versions 2.0.x (and earlier) mistakenly called the
+ioremap() function "vremap()". ioremap() is the proper name, but I
+didn't think straight when I wrote it originally. People who have to
+support both can do something like::
+
+ /* support old naming silliness */
+ #if LINUX_VERSION_CODE < 0x020100
+ #define ioremap vremap
+ #define iounmap vfree
+ #endif
+
+at the top of their source files, and then they can use the right names
+even on 2.0.x systems.
+
+And the above sounds worse than it really is. Most real drivers really
+don't do all that complex things (or rather: the complexity is not so
+much in the actual IO accesses as in error handling and timeouts etc).
+It's generally not hard to fix drivers, and in many cases the code
+actually looks better afterwards::
+
+ unsigned long signature = *(unsigned int *) 0xC0000;
+ vs
+ unsigned long signature = readl(0xC0000);
+
+I think the second version actually is more readable, no?
rbtree
generic-radix-tree
packing
+ bus-virt-phys-mapping
+ this_cpu_ops
timekeeping
errseq
:maxdepth: 1
memory-allocation
+ unaligned-memory-access
dma-api
dma-api-howto
dma-attributes
--- /dev/null
+===================
+this_cpu operations
+===================
+
+:Author: Christoph Lameter, August 4th, 2014
+:Author: Pranith Kumar, Aug 2nd, 2014
+
+this_cpu operations are a way of optimizing access to per cpu
+variables associated with the *currently* executing processor. This is
+done through the use of segment registers (or a dedicated register where
+the cpu permanently stored the beginning of the per cpu area for a
+specific processor).
+
+this_cpu operations add a per cpu variable offset to the processor
+specific per cpu base and encode that operation in the instruction
+operating on the per cpu variable.
+
+This means that there are no atomicity issues between the calculation of
+the offset and the operation on the data. Therefore it is not
+necessary to disable preemption or interrupts to ensure that the
+processor is not changed between the calculation of the address and
+the operation on the data.
+
+Read-modify-write operations are of particular interest. Frequently
+processors have special lower latency instructions that can operate
+without the typical synchronization overhead, but still provide some
+sort of relaxed atomicity guarantees. The x86, for example, can execute
+RMW (Read Modify Write) instructions like inc/dec/cmpxchg without the
+lock prefix and the associated latency penalty.
+
+Access to the variable without the lock prefix is not synchronized but
+synchronization is not necessary since we are dealing with per cpu
+data specific to the currently executing processor. Only the current
+processor should be accessing that variable and therefore there are no
+concurrency issues with other processors in the system.
+
+Please note that accesses by remote processors to a per cpu area are
+exceptional situations and may impact performance and/or correctness
+(remote write operations) of local RMW operations via this_cpu_*.
+
+The main use of the this_cpu operations has been to optimize counter
+operations.
+
+The following this_cpu() operations with implied preemption protection
+are defined. These operations can be used without worrying about
+preemption and interrupts::
+
+ this_cpu_read(pcp)
+ this_cpu_write(pcp, val)
+ this_cpu_add(pcp, val)
+ this_cpu_and(pcp, val)
+ this_cpu_or(pcp, val)
+ this_cpu_add_return(pcp, val)
+ this_cpu_xchg(pcp, nval)
+ this_cpu_cmpxchg(pcp, oval, nval)
+ this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
+ this_cpu_sub(pcp, val)
+ this_cpu_inc(pcp)
+ this_cpu_dec(pcp)
+ this_cpu_sub_return(pcp, val)
+ this_cpu_inc_return(pcp)
+ this_cpu_dec_return(pcp)
+
+
+Inner working of this_cpu operations
+------------------------------------
+
+On x86 the fs: or the gs: segment registers contain the base of the
+per cpu area. It is then possible to simply use the segment override
+to relocate a per cpu relative address to the proper per cpu area for
+the processor. So the relocation to the per cpu base is encoded in the
+instruction via a segment register prefix.
+
+For example::
+
+ DEFINE_PER_CPU(int, x);
+ int z;
+
+ z = this_cpu_read(x);
+
+results in a single instruction::
+
+ mov ax, gs:[x]
+
+instead of a sequence of calculation of the address and then a fetch
+from that address which occurs with the per cpu operations. Before
+this_cpu_ops such sequence also required preempt disable/enable to
+prevent the kernel from moving the thread to a different processor
+while the calculation is performed.
+
+Consider the following this_cpu operation::
+
+ this_cpu_inc(x)
+
+The above results in the following single instruction (no lock prefix!)::
+
+ inc gs:[x]
+
+instead of the following operations required if there is no segment
+register::
+
+ int *y;
+ int cpu;
+
+ cpu = get_cpu();
+ y = per_cpu_ptr(&x, cpu);
+ (*y)++;
+ put_cpu();
+
+Note that these operations can only be used on per cpu data that is
+reserved for a specific processor. Without disabling preemption in the
+surrounding code this_cpu_inc() will only guarantee that one of the
+per cpu counters is correctly incremented. However, there is no
+guarantee that the OS will not move the process directly before or
+after the this_cpu instruction is executed. In general this means that
+the value of the individual counters for each processor are
+meaningless. The sum of all the per cpu counters is the only value
+that is of interest.
+
+Per cpu variables are used for performance reasons. Bouncing cache
+lines can be avoided if multiple processors concurrently go through
+the same code paths. Since each processor has its own per cpu
+variables no concurrent cache line updates take place. The price that
+has to be paid for this optimization is the need to add up the per cpu
+counters when the value of a counter is needed.
+
+
+Special operations
+------------------
+
+::
+
+ y = this_cpu_ptr(&x)
+
+Takes the offset of a per cpu variable (&x !) and returns the address
+of the per cpu variable that belongs to the currently executing
+processor. this_cpu_ptr avoids multiple steps that the common
+get_cpu/put_cpu sequence requires. No processor number is
+available. Instead, the offset of the local per cpu area is simply
+added to the per cpu offset.
+
+Note that this operation is usually used in a code segment when
+preemption has been disabled. The pointer is then used to
+access local per cpu data in a critical section. When preemption
+is re-enabled this pointer is usually no longer useful since it may
+no longer point to per cpu data of the current processor.
+
+
+Per cpu variables and offsets
+-----------------------------
+
+Per cpu variables have *offsets* to the beginning of the per cpu
+area. They do not have addresses although they look like that in the
+code. Offsets cannot be directly dereferenced. The offset must be
+added to a base pointer of a per cpu area of a processor in order to
+form a valid address.
+
+Therefore the use of x or &x outside of the context of per cpu
+operations is invalid and will generally be treated like a NULL
+pointer dereference.
+
+::
+
+ DEFINE_PER_CPU(int, x);
+
+In the context of per cpu operations the above implies that x is a per
+cpu variable. Most this_cpu operations take a cpu variable.
+
+::
+
+ int __percpu *p = &x;
+
+&x and hence p is the *offset* of a per cpu variable. this_cpu_ptr()
+takes the offset of a per cpu variable which makes this look a bit
+strange.
+
+
+Operations on a field of a per cpu structure
+--------------------------------------------
+
+Let's say we have a percpu structure::
+
+ struct s {
+ int n,m;
+ };
+
+ DEFINE_PER_CPU(struct s, p);
+
+
+Operations on these fields are straightforward::
+
+ this_cpu_inc(p.m)
+
+ z = this_cpu_cmpxchg(p.m, 0, 1);
+
+
+If we have an offset to struct s::
+
+ struct s __percpu *ps = &p;
+
+ this_cpu_dec(ps->m);
+
+ z = this_cpu_inc_return(ps->n);
+
+
+The calculation of the pointer may require the use of this_cpu_ptr()
+if we do not make use of this_cpu ops later to manipulate fields::
+
+ struct s *pp;
+
+ pp = this_cpu_ptr(&p);
+
+ pp->m--;
+
+ z = pp->n++;
+
+
+Variants of this_cpu ops
+------------------------
+
+this_cpu ops are interrupt safe. Some architectures do not support
+these per cpu local operations. In that case the operation must be
+replaced by code that disables interrupts, then does the operations
+that are guaranteed to be atomic and then re-enable interrupts. Doing
+so is expensive. If there are other reasons why the scheduler cannot
+change the processor we are executing on then there is no reason to
+disable interrupts. For that purpose the following __this_cpu operations
+are provided.
+
+These operations have no guarantee against concurrent interrupts or
+preemption. If a per cpu variable is not used in an interrupt context
+and the scheduler cannot preempt, then they are safe. If any interrupts
+still occur while an operation is in progress and if the interrupt too
+modifies the variable, then RMW actions can not be guaranteed to be
+safe::
+
+ __this_cpu_read(pcp)
+ __this_cpu_write(pcp, val)
+ __this_cpu_add(pcp, val)
+ __this_cpu_and(pcp, val)
+ __this_cpu_or(pcp, val)
+ __this_cpu_add_return(pcp, val)
+ __this_cpu_xchg(pcp, nval)
+ __this_cpu_cmpxchg(pcp, oval, nval)
+ __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
+ __this_cpu_sub(pcp, val)
+ __this_cpu_inc(pcp)
+ __this_cpu_dec(pcp)
+ __this_cpu_sub_return(pcp, val)
+ __this_cpu_inc_return(pcp)
+ __this_cpu_dec_return(pcp)
+
+
+Will increment x and will not fall-back to code that disables
+interrupts on platforms that cannot accomplish atomicity through
+address relocation and a Read-Modify-Write operation in the same
+instruction.
+
+
+&this_cpu_ptr(pp)->n vs this_cpu_ptr(&pp->n)
+--------------------------------------------
+
+The first operation takes the offset and forms an address and then
+adds the offset of the n field. This may result in two add
+instructions emitted by the compiler.
+
+The second one first adds the two offsets and then does the
+relocation. IMHO the second form looks cleaner and has an easier time
+with (). The second form also is consistent with the way
+this_cpu_read() and friends are used.
+
+
+Remote access to per cpu data
+------------------------------
+
+Per cpu data structures are designed to be used by one cpu exclusively.
+If you use the variables as intended, this_cpu_ops() are guaranteed to
+be "atomic" as no other CPU has access to these data structures.
+
+There are special cases where you might need to access per cpu data
+structures remotely. It is usually safe to do a remote read access
+and that is frequently done to summarize counters. Remote write access
+something which could be problematic because this_cpu ops do not
+have lock semantics. A remote write may interfere with a this_cpu
+RMW operation.
+
+Remote write accesses to percpu data structures are highly discouraged
+unless absolutely necessary. Please consider using an IPI to wake up
+the remote CPU and perform the update to its per cpu area.
+
+To access per-cpu data structure remotely, typically the per_cpu_ptr()
+function is used::
+
+
+ DEFINE_PER_CPU(struct data, datap);
+
+ struct data *p = per_cpu_ptr(&datap, cpu);
+
+This makes it explicit that we are getting ready to access a percpu
+area remotely.
+
+You can also do the following to convert the datap offset to an address::
+
+ struct data *p = this_cpu_ptr(&datap);
+
+but, passing of pointers calculated via this_cpu_ptr to other cpus is
+unusual and should be avoided.
+
+Remote access are typically only for reading the status of another cpus
+per cpu data. Write accesses can cause unique problems due to the
+relaxed synchronization requirements for this_cpu operations.
+
+One example that illustrates some concerns with write operations is
+the following scenario that occurs because two per cpu variables
+share a cache-line but the relaxed synchronization is applied to
+only one process updating the cache-line.
+
+Consider the following example::
+
+
+ struct test {
+ atomic_t a;
+ int b;
+ };
+
+ DEFINE_PER_CPU(struct test, onecacheline);
+
+There is some concern about what would happen if the field 'a' is updated
+remotely from one processor and the local processor would use this_cpu ops
+to update field b. Care should be taken that such simultaneous accesses to
+data within the same cache line are avoided. Also costly synchronization
+may be necessary. IPIs are generally recommended in such scenarios instead
+of a remote write to the per cpu area of another processor.
+
+Even in cases where the remote writes are rare, please bear in
+mind that a remote write will evict the cache line from the processor
+that most likely will access it. If the processor wakes up and finds a
+missing local cache line of a per cpu area, its performance and hence
+the wake up times will be affected.
--- /dev/null
+=========================
+Unaligned Memory Accesses
+=========================
+
+:Author: Daniel Drake <dsd@gentoo.org>,
+:Author: Johannes Berg <johannes@sipsolutions.net>
+
+:With help from: Alan Cox, Avuton Olrich, Heikki Orsila, Jan Engelhardt,
+ Kyle McMartin, Kyle Moffett, Randy Dunlap, Robert Hancock, Uli Kunitz,
+ Vadim Lobanov
+
+
+Linux runs on a wide variety of architectures which have varying behaviour
+when it comes to memory access. This document presents some details about
+unaligned accesses, why you need to write code that doesn't cause them,
+and how to write such code!
+
+
+The definition of an unaligned access
+=====================================
+
+Unaligned memory accesses occur when you try to read N bytes of data starting
+from an address that is not evenly divisible by N (i.e. addr % N != 0).
+For example, reading 4 bytes of data from address 0x10004 is fine, but
+reading 4 bytes of data from address 0x10005 would be an unaligned memory
+access.
+
+The above may seem a little vague, as memory access can happen in different
+ways. The context here is at the machine code level: certain instructions read
+or write a number of bytes to or from memory (e.g. movb, movw, movl in x86
+assembly). As will become clear, it is relatively easy to spot C statements
+which will compile to multiple-byte memory access instructions, namely when
+dealing with types such as u16, u32 and u64.
+
+
+Natural alignment
+=================
+
+The rule mentioned above forms what we refer to as natural alignment:
+When accessing N bytes of memory, the base memory address must be evenly
+divisible by N, i.e. addr % N == 0.
+
+When writing code, assume the target architecture has natural alignment
+requirements.
+
+In reality, only a few architectures require natural alignment on all sizes
+of memory access. However, we must consider ALL supported architectures;
+writing code that satisfies natural alignment requirements is the easiest way
+to achieve full portability.
+
+
+Why unaligned access is bad
+===========================
+
+The effects of performing an unaligned memory access vary from architecture
+to architecture. It would be easy to write a whole document on the differences
+here; a summary of the common scenarios is presented below:
+
+ - Some architectures are able to perform unaligned memory accesses
+ transparently, but there is usually a significant performance cost.
+ - Some architectures raise processor exceptions when unaligned accesses
+ happen. The exception handler is able to correct the unaligned access,
+ at significant cost to performance.
+ - Some architectures raise processor exceptions when unaligned accesses
+ happen, but the exceptions do not contain enough information for the
+ unaligned access to be corrected.
+ - Some architectures are not capable of unaligned memory access, but will
+ silently perform a different memory access to the one that was requested,
+ resulting in a subtle code bug that is hard to detect!
+
+It should be obvious from the above that if your code causes unaligned
+memory accesses to happen, your code will not work correctly on certain
+platforms and will cause performance problems on others.
+
+
+Code that does not cause unaligned access
+=========================================
+
+At first, the concepts above may seem a little hard to relate to actual
+coding practice. After all, you don't have a great deal of control over
+memory addresses of certain variables, etc.
+
+Fortunately things are not too complex, as in most cases, the compiler
+ensures that things will work for you. For example, take the following
+structure::
+
+ struct foo {
+ u16 field1;
+ u32 field2;
+ u8 field3;
+ };
+
+Let us assume that an instance of the above structure resides in memory
+starting at address 0x10000. With a basic level of understanding, it would
+not be unreasonable to expect that accessing field2 would cause an unaligned
+access. You'd be expecting field2 to be located at offset 2 bytes into the
+structure, i.e. address 0x10002, but that address is not evenly divisible
+by 4 (remember, we're reading a 4 byte value here).
+
+Fortunately, the compiler understands the alignment constraints, so in the
+above case it would insert 2 bytes of padding in between field1 and field2.
+Therefore, for standard structure types you can always rely on the compiler
+to pad structures so that accesses to fields are suitably aligned (assuming
+you do not cast the field to a type of different length).
+
+Similarly, you can also rely on the compiler to align variables and function
+parameters to a naturally aligned scheme, based on the size of the type of
+the variable.
+
+At this point, it should be clear that accessing a single byte (u8 or char)
+will never cause an unaligned access, because all memory addresses are evenly
+divisible by one.
+
+On a related topic, with the above considerations in mind you may observe
+that you could reorder the fields in the structure in order to place fields
+where padding would otherwise be inserted, and hence reduce the overall
+resident memory size of structure instances. The optimal layout of the
+above example is::
+
+ struct foo {
+ u32 field2;
+ u16 field1;
+ u8 field3;
+ };
+
+For a natural alignment scheme, the compiler would only have to add a single
+byte of padding at the end of the structure. This padding is added in order
+to satisfy alignment constraints for arrays of these structures.
+
+Another point worth mentioning is the use of __attribute__((packed)) on a
+structure type. This GCC-specific attribute tells the compiler never to
+insert any padding within structures, useful when you want to use a C struct
+to represent some data that comes in a fixed arrangement 'off the wire'.
+
+You might be inclined to believe that usage of this attribute can easily
+lead to unaligned accesses when accessing fields that do not satisfy
+architectural alignment requirements. However, again, the compiler is aware
+of the alignment constraints and will generate extra instructions to perform
+the memory access in a way that does not cause unaligned access. Of course,
+the extra instructions obviously cause a loss in performance compared to the
+non-packed case, so the packed attribute should only be used when avoiding
+structure padding is of importance.
+
+
+Code that causes unaligned access
+=================================
+
+With the above in mind, let's move onto a real life example of a function
+that can cause an unaligned memory access. The following function taken
+from include/linux/etherdevice.h is an optimized routine to compare two
+ethernet MAC addresses for equality::
+
+ bool ether_addr_equal(const u8 *addr1, const u8 *addr2)
+ {
+ #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
+ u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) |
+ ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4)));
+
+ return fold == 0;
+ #else
+ const u16 *a = (const u16 *)addr1;
+ const u16 *b = (const u16 *)addr2;
+ return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) == 0;
+ #endif
+ }
+
+In the above function, when the hardware has efficient unaligned access
+capability, there is no issue with this code. But when the hardware isn't
+able to access memory on arbitrary boundaries, the reference to a[0] causes
+2 bytes (16 bits) to be read from memory starting at address addr1.
+
+Think about what would happen if addr1 was an odd address such as 0x10003.
+(Hint: it'd be an unaligned access.)
+
+Despite the potential unaligned access problems with the above function, it
+is included in the kernel anyway but is understood to only work normally on
+16-bit-aligned addresses. It is up to the caller to ensure this alignment or
+not use this function at all. This alignment-unsafe function is still useful
+as it is a decent optimization for the cases when you can ensure alignment,
+which is true almost all of the time in ethernet networking context.
+
+
+Here is another example of some code that could cause unaligned accesses::
+
+ void myfunc(u8 *data, u32 value)
+ {
+ [...]
+ *((u32 *) data) = cpu_to_le32(value);
+ [...]
+ }
+
+This code will cause unaligned accesses every time the data parameter points
+to an address that is not evenly divisible by 4.
+
+In summary, the 2 main scenarios where you may run into unaligned access
+problems involve:
+
+ 1. Casting variables to types of different lengths
+ 2. Pointer arithmetic followed by access to at least 2 bytes of data
+
+
+Avoiding unaligned accesses
+===========================
+
+The easiest way to avoid unaligned access is to use the get_unaligned() and
+put_unaligned() macros provided by the <asm/unaligned.h> header file.
+
+Going back to an earlier example of code that potentially causes unaligned
+access::
+
+ void myfunc(u8 *data, u32 value)
+ {
+ [...]
+ *((u32 *) data) = cpu_to_le32(value);
+ [...]
+ }
+
+To avoid the unaligned memory access, you would rewrite it as follows::
+
+ void myfunc(u8 *data, u32 value)
+ {
+ [...]
+ value = cpu_to_le32(value);
+ put_unaligned(value, (u32 *) data);
+ [...]
+ }
+
+The get_unaligned() macro works similarly. Assuming 'data' is a pointer to
+memory and you wish to avoid unaligned access, its usage is as follows::
+
+ u32 value = get_unaligned((u32 *) data);
+
+These macros work for memory accesses of any length (not just 32 bits as
+in the examples above). Be aware that when compared to standard access of
+aligned memory, using these macros to access unaligned memory can be costly in
+terms of performance.
+
+If use of such macros is not convenient, another option is to use memcpy(),
+where the source or destination (or both) are of type u8* or unsigned char*.
+Due to the byte-wise nature of this operation, unaligned accesses are avoided.
+
+
+Alignment vs. Networking
+========================
+
+On architectures that require aligned loads, networking requires that the IP
+header is aligned on a four-byte boundary to optimise the IP stack. For
+regular ethernet hardware, the constant NET_IP_ALIGN is used. On most
+architectures this constant has the value 2 because the normal ethernet
+header is 14 bytes long, so in order to get proper alignment one needs to
+DMA to an address which can be expressed as 4*n + 2. One notable exception
+here is powerpc which defines NET_IP_ALIGN to 0 because DMA to unaligned
+addresses can be very expensive and dwarf the cost of unaligned loads.
+
+For some ethernet hardware that cannot DMA to unaligned addresses like
+4*n+2 or non-ethernet hardware, this can be a problem, and it is then
+required to copy the incoming frame into an aligned buffer. Because this is
+unnecessary on architectures that can do unaligned accesses, the code can be
+made dependent on CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS like so::
+
+ #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
+ skb = original skb
+ #else
+ skb = copy skb
+ #endif
+++ /dev/null
-=========================
-Unaligned Memory Accesses
-=========================
-
-:Author: Daniel Drake <dsd@gentoo.org>,
-:Author: Johannes Berg <johannes@sipsolutions.net>
-
-:With help from: Alan Cox, Avuton Olrich, Heikki Orsila, Jan Engelhardt,
- Kyle McMartin, Kyle Moffett, Randy Dunlap, Robert Hancock, Uli Kunitz,
- Vadim Lobanov
-
-
-Linux runs on a wide variety of architectures which have varying behaviour
-when it comes to memory access. This document presents some details about
-unaligned accesses, why you need to write code that doesn't cause them,
-and how to write such code!
-
-
-The definition of an unaligned access
-=====================================
-
-Unaligned memory accesses occur when you try to read N bytes of data starting
-from an address that is not evenly divisible by N (i.e. addr % N != 0).
-For example, reading 4 bytes of data from address 0x10004 is fine, but
-reading 4 bytes of data from address 0x10005 would be an unaligned memory
-access.
-
-The above may seem a little vague, as memory access can happen in different
-ways. The context here is at the machine code level: certain instructions read
-or write a number of bytes to or from memory (e.g. movb, movw, movl in x86
-assembly). As will become clear, it is relatively easy to spot C statements
-which will compile to multiple-byte memory access instructions, namely when
-dealing with types such as u16, u32 and u64.
-
-
-Natural alignment
-=================
-
-The rule mentioned above forms what we refer to as natural alignment:
-When accessing N bytes of memory, the base memory address must be evenly
-divisible by N, i.e. addr % N == 0.
-
-When writing code, assume the target architecture has natural alignment
-requirements.
-
-In reality, only a few architectures require natural alignment on all sizes
-of memory access. However, we must consider ALL supported architectures;
-writing code that satisfies natural alignment requirements is the easiest way
-to achieve full portability.
-
-
-Why unaligned access is bad
-===========================
-
-The effects of performing an unaligned memory access vary from architecture
-to architecture. It would be easy to write a whole document on the differences
-here; a summary of the common scenarios is presented below:
-
- - Some architectures are able to perform unaligned memory accesses
- transparently, but there is usually a significant performance cost.
- - Some architectures raise processor exceptions when unaligned accesses
- happen. The exception handler is able to correct the unaligned access,
- at significant cost to performance.
- - Some architectures raise processor exceptions when unaligned accesses
- happen, but the exceptions do not contain enough information for the
- unaligned access to be corrected.
- - Some architectures are not capable of unaligned memory access, but will
- silently perform a different memory access to the one that was requested,
- resulting in a subtle code bug that is hard to detect!
-
-It should be obvious from the above that if your code causes unaligned
-memory accesses to happen, your code will not work correctly on certain
-platforms and will cause performance problems on others.
-
-
-Code that does not cause unaligned access
-=========================================
-
-At first, the concepts above may seem a little hard to relate to actual
-coding practice. After all, you don't have a great deal of control over
-memory addresses of certain variables, etc.
-
-Fortunately things are not too complex, as in most cases, the compiler
-ensures that things will work for you. For example, take the following
-structure::
-
- struct foo {
- u16 field1;
- u32 field2;
- u8 field3;
- };
-
-Let us assume that an instance of the above structure resides in memory
-starting at address 0x10000. With a basic level of understanding, it would
-not be unreasonable to expect that accessing field2 would cause an unaligned
-access. You'd be expecting field2 to be located at offset 2 bytes into the
-structure, i.e. address 0x10002, but that address is not evenly divisible
-by 4 (remember, we're reading a 4 byte value here).
-
-Fortunately, the compiler understands the alignment constraints, so in the
-above case it would insert 2 bytes of padding in between field1 and field2.
-Therefore, for standard structure types you can always rely on the compiler
-to pad structures so that accesses to fields are suitably aligned (assuming
-you do not cast the field to a type of different length).
-
-Similarly, you can also rely on the compiler to align variables and function
-parameters to a naturally aligned scheme, based on the size of the type of
-the variable.
-
-At this point, it should be clear that accessing a single byte (u8 or char)
-will never cause an unaligned access, because all memory addresses are evenly
-divisible by one.
-
-On a related topic, with the above considerations in mind you may observe
-that you could reorder the fields in the structure in order to place fields
-where padding would otherwise be inserted, and hence reduce the overall
-resident memory size of structure instances. The optimal layout of the
-above example is::
-
- struct foo {
- u32 field2;
- u16 field1;
- u8 field3;
- };
-
-For a natural alignment scheme, the compiler would only have to add a single
-byte of padding at the end of the structure. This padding is added in order
-to satisfy alignment constraints for arrays of these structures.
-
-Another point worth mentioning is the use of __attribute__((packed)) on a
-structure type. This GCC-specific attribute tells the compiler never to
-insert any padding within structures, useful when you want to use a C struct
-to represent some data that comes in a fixed arrangement 'off the wire'.
-
-You might be inclined to believe that usage of this attribute can easily
-lead to unaligned accesses when accessing fields that do not satisfy
-architectural alignment requirements. However, again, the compiler is aware
-of the alignment constraints and will generate extra instructions to perform
-the memory access in a way that does not cause unaligned access. Of course,
-the extra instructions obviously cause a loss in performance compared to the
-non-packed case, so the packed attribute should only be used when avoiding
-structure padding is of importance.
-
-
-Code that causes unaligned access
-=================================
-
-With the above in mind, let's move onto a real life example of a function
-that can cause an unaligned memory access. The following function taken
-from include/linux/etherdevice.h is an optimized routine to compare two
-ethernet MAC addresses for equality::
-
- bool ether_addr_equal(const u8 *addr1, const u8 *addr2)
- {
- #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
- u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) |
- ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4)));
-
- return fold == 0;
- #else
- const u16 *a = (const u16 *)addr1;
- const u16 *b = (const u16 *)addr2;
- return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) == 0;
- #endif
- }
-
-In the above function, when the hardware has efficient unaligned access
-capability, there is no issue with this code. But when the hardware isn't
-able to access memory on arbitrary boundaries, the reference to a[0] causes
-2 bytes (16 bits) to be read from memory starting at address addr1.
-
-Think about what would happen if addr1 was an odd address such as 0x10003.
-(Hint: it'd be an unaligned access.)
-
-Despite the potential unaligned access problems with the above function, it
-is included in the kernel anyway but is understood to only work normally on
-16-bit-aligned addresses. It is up to the caller to ensure this alignment or
-not use this function at all. This alignment-unsafe function is still useful
-as it is a decent optimization for the cases when you can ensure alignment,
-which is true almost all of the time in ethernet networking context.
-
-
-Here is another example of some code that could cause unaligned accesses::
-
- void myfunc(u8 *data, u32 value)
- {
- [...]
- *((u32 *) data) = cpu_to_le32(value);
- [...]
- }
-
-This code will cause unaligned accesses every time the data parameter points
-to an address that is not evenly divisible by 4.
-
-In summary, the 2 main scenarios where you may run into unaligned access
-problems involve:
-
- 1. Casting variables to types of different lengths
- 2. Pointer arithmetic followed by access to at least 2 bytes of data
-
-
-Avoiding unaligned accesses
-===========================
-
-The easiest way to avoid unaligned access is to use the get_unaligned() and
-put_unaligned() macros provided by the <asm/unaligned.h> header file.
-
-Going back to an earlier example of code that potentially causes unaligned
-access::
-
- void myfunc(u8 *data, u32 value)
- {
- [...]
- *((u32 *) data) = cpu_to_le32(value);
- [...]
- }
-
-To avoid the unaligned memory access, you would rewrite it as follows::
-
- void myfunc(u8 *data, u32 value)
- {
- [...]
- value = cpu_to_le32(value);
- put_unaligned(value, (u32 *) data);
- [...]
- }
-
-The get_unaligned() macro works similarly. Assuming 'data' is a pointer to
-memory and you wish to avoid unaligned access, its usage is as follows::
-
- u32 value = get_unaligned((u32 *) data);
-
-These macros work for memory accesses of any length (not just 32 bits as
-in the examples above). Be aware that when compared to standard access of
-aligned memory, using these macros to access unaligned memory can be costly in
-terms of performance.
-
-If use of such macros is not convenient, another option is to use memcpy(),
-where the source or destination (or both) are of type u8* or unsigned char*.
-Due to the byte-wise nature of this operation, unaligned accesses are avoided.
-
-
-Alignment vs. Networking
-========================
-
-On architectures that require aligned loads, networking requires that the IP
-header is aligned on a four-byte boundary to optimise the IP stack. For
-regular ethernet hardware, the constant NET_IP_ALIGN is used. On most
-architectures this constant has the value 2 because the normal ethernet
-header is 14 bytes long, so in order to get proper alignment one needs to
-DMA to an address which can be expressed as 4*n + 2. One notable exception
-here is powerpc which defines NET_IP_ALIGN to 0 because DMA to unaligned
-addresses can be very expensive and dwarf the cost of unaligned loads.
-
-For some ethernet hardware that cannot DMA to unaligned addresses like
-4*n+2 or non-ethernet hardware, this can be a problem, and it is then
-required to copy the incoming frame into an aligned buffer. Because this is
-unnecessary on architectures that can do unaligned accesses, the code can be
-made dependent on CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS like so::
-
- #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
- skb = original skb
- #else
- skb = copy skb
- #endif
+++ /dev/null
-===================
-this_cpu operations
-===================
-
-:Author: Christoph Lameter, August 4th, 2014
-:Author: Pranith Kumar, Aug 2nd, 2014
-
-this_cpu operations are a way of optimizing access to per cpu
-variables associated with the *currently* executing processor. This is
-done through the use of segment registers (or a dedicated register where
-the cpu permanently stored the beginning of the per cpu area for a
-specific processor).
-
-this_cpu operations add a per cpu variable offset to the processor
-specific per cpu base and encode that operation in the instruction
-operating on the per cpu variable.
-
-This means that there are no atomicity issues between the calculation of
-the offset and the operation on the data. Therefore it is not
-necessary to disable preemption or interrupts to ensure that the
-processor is not changed between the calculation of the address and
-the operation on the data.
-
-Read-modify-write operations are of particular interest. Frequently
-processors have special lower latency instructions that can operate
-without the typical synchronization overhead, but still provide some
-sort of relaxed atomicity guarantees. The x86, for example, can execute
-RMW (Read Modify Write) instructions like inc/dec/cmpxchg without the
-lock prefix and the associated latency penalty.
-
-Access to the variable without the lock prefix is not synchronized but
-synchronization is not necessary since we are dealing with per cpu
-data specific to the currently executing processor. Only the current
-processor should be accessing that variable and therefore there are no
-concurrency issues with other processors in the system.
-
-Please note that accesses by remote processors to a per cpu area are
-exceptional situations and may impact performance and/or correctness
-(remote write operations) of local RMW operations via this_cpu_*.
-
-The main use of the this_cpu operations has been to optimize counter
-operations.
-
-The following this_cpu() operations with implied preemption protection
-are defined. These operations can be used without worrying about
-preemption and interrupts::
-
- this_cpu_read(pcp)
- this_cpu_write(pcp, val)
- this_cpu_add(pcp, val)
- this_cpu_and(pcp, val)
- this_cpu_or(pcp, val)
- this_cpu_add_return(pcp, val)
- this_cpu_xchg(pcp, nval)
- this_cpu_cmpxchg(pcp, oval, nval)
- this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
- this_cpu_sub(pcp, val)
- this_cpu_inc(pcp)
- this_cpu_dec(pcp)
- this_cpu_sub_return(pcp, val)
- this_cpu_inc_return(pcp)
- this_cpu_dec_return(pcp)
-
-
-Inner working of this_cpu operations
-------------------------------------
-
-On x86 the fs: or the gs: segment registers contain the base of the
-per cpu area. It is then possible to simply use the segment override
-to relocate a per cpu relative address to the proper per cpu area for
-the processor. So the relocation to the per cpu base is encoded in the
-instruction via a segment register prefix.
-
-For example::
-
- DEFINE_PER_CPU(int, x);
- int z;
-
- z = this_cpu_read(x);
-
-results in a single instruction::
-
- mov ax, gs:[x]
-
-instead of a sequence of calculation of the address and then a fetch
-from that address which occurs with the per cpu operations. Before
-this_cpu_ops such sequence also required preempt disable/enable to
-prevent the kernel from moving the thread to a different processor
-while the calculation is performed.
-
-Consider the following this_cpu operation::
-
- this_cpu_inc(x)
-
-The above results in the following single instruction (no lock prefix!)::
-
- inc gs:[x]
-
-instead of the following operations required if there is no segment
-register::
-
- int *y;
- int cpu;
-
- cpu = get_cpu();
- y = per_cpu_ptr(&x, cpu);
- (*y)++;
- put_cpu();
-
-Note that these operations can only be used on per cpu data that is
-reserved for a specific processor. Without disabling preemption in the
-surrounding code this_cpu_inc() will only guarantee that one of the
-per cpu counters is correctly incremented. However, there is no
-guarantee that the OS will not move the process directly before or
-after the this_cpu instruction is executed. In general this means that
-the value of the individual counters for each processor are
-meaningless. The sum of all the per cpu counters is the only value
-that is of interest.
-
-Per cpu variables are used for performance reasons. Bouncing cache
-lines can be avoided if multiple processors concurrently go through
-the same code paths. Since each processor has its own per cpu
-variables no concurrent cache line updates take place. The price that
-has to be paid for this optimization is the need to add up the per cpu
-counters when the value of a counter is needed.
-
-
-Special operations
-------------------
-
-::
-
- y = this_cpu_ptr(&x)
-
-Takes the offset of a per cpu variable (&x !) and returns the address
-of the per cpu variable that belongs to the currently executing
-processor. this_cpu_ptr avoids multiple steps that the common
-get_cpu/put_cpu sequence requires. No processor number is
-available. Instead, the offset of the local per cpu area is simply
-added to the per cpu offset.
-
-Note that this operation is usually used in a code segment when
-preemption has been disabled. The pointer is then used to
-access local per cpu data in a critical section. When preemption
-is re-enabled this pointer is usually no longer useful since it may
-no longer point to per cpu data of the current processor.
-
-
-Per cpu variables and offsets
------------------------------
-
-Per cpu variables have *offsets* to the beginning of the per cpu
-area. They do not have addresses although they look like that in the
-code. Offsets cannot be directly dereferenced. The offset must be
-added to a base pointer of a per cpu area of a processor in order to
-form a valid address.
-
-Therefore the use of x or &x outside of the context of per cpu
-operations is invalid and will generally be treated like a NULL
-pointer dereference.
-
-::
-
- DEFINE_PER_CPU(int, x);
-
-In the context of per cpu operations the above implies that x is a per
-cpu variable. Most this_cpu operations take a cpu variable.
-
-::
-
- int __percpu *p = &x;
-
-&x and hence p is the *offset* of a per cpu variable. this_cpu_ptr()
-takes the offset of a per cpu variable which makes this look a bit
-strange.
-
-
-Operations on a field of a per cpu structure
---------------------------------------------
-
-Let's say we have a percpu structure::
-
- struct s {
- int n,m;
- };
-
- DEFINE_PER_CPU(struct s, p);
-
-
-Operations on these fields are straightforward::
-
- this_cpu_inc(p.m)
-
- z = this_cpu_cmpxchg(p.m, 0, 1);
-
-
-If we have an offset to struct s::
-
- struct s __percpu *ps = &p;
-
- this_cpu_dec(ps->m);
-
- z = this_cpu_inc_return(ps->n);
-
-
-The calculation of the pointer may require the use of this_cpu_ptr()
-if we do not make use of this_cpu ops later to manipulate fields::
-
- struct s *pp;
-
- pp = this_cpu_ptr(&p);
-
- pp->m--;
-
- z = pp->n++;
-
-
-Variants of this_cpu ops
-------------------------
-
-this_cpu ops are interrupt safe. Some architectures do not support
-these per cpu local operations. In that case the operation must be
-replaced by code that disables interrupts, then does the operations
-that are guaranteed to be atomic and then re-enable interrupts. Doing
-so is expensive. If there are other reasons why the scheduler cannot
-change the processor we are executing on then there is no reason to
-disable interrupts. For that purpose the following __this_cpu operations
-are provided.
-
-These operations have no guarantee against concurrent interrupts or
-preemption. If a per cpu variable is not used in an interrupt context
-and the scheduler cannot preempt, then they are safe. If any interrupts
-still occur while an operation is in progress and if the interrupt too
-modifies the variable, then RMW actions can not be guaranteed to be
-safe::
-
- __this_cpu_read(pcp)
- __this_cpu_write(pcp, val)
- __this_cpu_add(pcp, val)
- __this_cpu_and(pcp, val)
- __this_cpu_or(pcp, val)
- __this_cpu_add_return(pcp, val)
- __this_cpu_xchg(pcp, nval)
- __this_cpu_cmpxchg(pcp, oval, nval)
- __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
- __this_cpu_sub(pcp, val)
- __this_cpu_inc(pcp)
- __this_cpu_dec(pcp)
- __this_cpu_sub_return(pcp, val)
- __this_cpu_inc_return(pcp)
- __this_cpu_dec_return(pcp)
-
-
-Will increment x and will not fall-back to code that disables
-interrupts on platforms that cannot accomplish atomicity through
-address relocation and a Read-Modify-Write operation in the same
-instruction.
-
-
-&this_cpu_ptr(pp)->n vs this_cpu_ptr(&pp->n)
---------------------------------------------
-
-The first operation takes the offset and forms an address and then
-adds the offset of the n field. This may result in two add
-instructions emitted by the compiler.
-
-The second one first adds the two offsets and then does the
-relocation. IMHO the second form looks cleaner and has an easier time
-with (). The second form also is consistent with the way
-this_cpu_read() and friends are used.
-
-
-Remote access to per cpu data
-------------------------------
-
-Per cpu data structures are designed to be used by one cpu exclusively.
-If you use the variables as intended, this_cpu_ops() are guaranteed to
-be "atomic" as no other CPU has access to these data structures.
-
-There are special cases where you might need to access per cpu data
-structures remotely. It is usually safe to do a remote read access
-and that is frequently done to summarize counters. Remote write access
-something which could be problematic because this_cpu ops do not
-have lock semantics. A remote write may interfere with a this_cpu
-RMW operation.
-
-Remote write accesses to percpu data structures are highly discouraged
-unless absolutely necessary. Please consider using an IPI to wake up
-the remote CPU and perform the update to its per cpu area.
-
-To access per-cpu data structure remotely, typically the per_cpu_ptr()
-function is used::
-
-
- DEFINE_PER_CPU(struct data, datap);
-
- struct data *p = per_cpu_ptr(&datap, cpu);
-
-This makes it explicit that we are getting ready to access a percpu
-area remotely.
-
-You can also do the following to convert the datap offset to an address::
-
- struct data *p = this_cpu_ptr(&datap);
-
-but, passing of pointers calculated via this_cpu_ptr to other cpus is
-unusual and should be avoided.
-
-Remote access are typically only for reading the status of another cpus
-per cpu data. Write accesses can cause unique problems due to the
-relaxed synchronization requirements for this_cpu operations.
-
-One example that illustrates some concerns with write operations is
-the following scenario that occurs because two per cpu variables
-share a cache-line but the relaxed synchronization is applied to
-only one process updating the cache-line.
-
-Consider the following example::
-
-
- struct test {
- atomic_t a;
- int b;
- };
-
- DEFINE_PER_CPU(struct test, onecacheline);
-
-There is some concern about what would happen if the field 'a' is updated
-remotely from one processor and the local processor would use this_cpu ops
-to update field b. Care should be taken that such simultaneous accesses to
-data within the same cache line are avoided. Also costly synchronization
-may be necessary. IPIs are generally recommended in such scenarios instead
-of a remote write to the per cpu area of another processor.
-
-Even in cases where the remote writes are rare, please bear in
-mind that a remote write will evict the cache line from the processor
-that most likely will access it. If the processor wakes up and finds a
-missing local cache line of a per cpu area, its performance and hence
-the wake up times will be affected.
problems with received packets if doing so would not help
much.
- See Documentation/unaligned-memory-access.txt for more
+ See Documentation/core-api/unaligned-memory-access.rst for more
information on the topic of unaligned memory accesses.
config ARCH_USE_BUILTIN_BSWAP