}
extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
struct vm_area_struct *vma, unsigned long addr,
- int node);
+ int node, bool hugepage);
+#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
+ alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
#else
#define alloc_pages(gfp_mask, order) \
alloc_pages_node(numa_node_id(), gfp_mask, order)
-#define alloc_pages_vma(gfp_mask, order, vma, addr, node)\
+#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
+ alloc_pages(gfp_mask, order)
+#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
alloc_pages(gfp_mask, order)
#endif
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
#define alloc_page_vma(gfp_mask, vma, addr) \
- alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id())
+ alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
#define alloc_page_vma_node(gfp_mask, vma, addr, node) \
- alloc_pages_vma(gfp_mask, 0, vma, addr, node)
+ alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
extern unsigned long get_zeroed_page(gfp_t gfp_mask);
* available
* never: never stall for any thp allocation
*/
-static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
+static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
- const gfp_t gfp_mask = GFP_TRANSHUGE_LIGHT | __GFP_THISNODE;
/* Always do synchronous compaction */
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
- return GFP_TRANSHUGE | __GFP_THISNODE |
- (vma_madvised ? 0 : __GFP_NORETRY);
+ return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
/* Kick kcompactd and fail quickly */
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
- return gfp_mask | __GFP_KSWAPD_RECLAIM;
+ return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
/* Synchronous compaction if madvised, otherwise kick kcompactd */
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
- return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM :
- __GFP_KSWAPD_RECLAIM);
+ return GFP_TRANSHUGE_LIGHT |
+ (vma_madvised ? __GFP_DIRECT_RECLAIM :
+ __GFP_KSWAPD_RECLAIM);
/* Only do synchronous compaction if madvised */
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
- return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
+ return GFP_TRANSHUGE_LIGHT |
+ (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
- return gfp_mask;
+ return GFP_TRANSHUGE_LIGHT;
}
/* Caller must hold page table lock. */
pte_free(vma->vm_mm, pgtable);
return ret;
}
- gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
- page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
+ gfp = alloc_hugepage_direct_gfpmask(vma);
+ page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
if (unlikely(!page)) {
count_vm_event(THP_FAULT_FALLBACK);
return VM_FAULT_FALLBACK;
alloc:
if (__transparent_hugepage_enabled(vma) &&
!transparent_hugepage_debug_cow()) {
- huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
- new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
- haddr, numa_node_id());
+ huge_gfp = alloc_hugepage_direct_gfpmask(vma);
+ new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
} else
new_page = NULL;
} else if (PageTransHuge(page)) {
struct page *thp;
- thp = alloc_pages_vma(GFP_TRANSHUGE, HPAGE_PMD_ORDER, vma,
- address, numa_node_id());
+ thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
+ HPAGE_PMD_ORDER);
if (!thp)
return NULL;
prep_transhuge_page(thp);
* @vma: Pointer to VMA or NULL if not available.
* @addr: Virtual Address of the allocation. Must be inside the VMA.
* @node: Which node to prefer for allocation (modulo policy).
+ * @hugepage: for hugepages try only the preferred node if possible
*
* This function allocates a page from the kernel page pool and applies
* a NUMA policy associated with the VMA or the current process.
*/
struct page *
alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
- unsigned long addr, int node)
+ unsigned long addr, int node, bool hugepage)
{
struct mempolicy *pol;
struct page *page;
goto out;
}
+ if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
+ int hpage_node = node;
+
+ /*
+ * For hugepage allocation and non-interleave policy which
+ * allows the current node (or other explicitly preferred
+ * node) we only try to allocate from the current/preferred
+ * node and don't fall back to other nodes, as the cost of
+ * remote accesses would likely offset THP benefits.
+ *
+ * If the policy is interleave, or does not allow the current
+ * node in its nodemask, we allocate the standard way.
+ */
+ if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
+ hpage_node = pol->v.preferred_node;
+
+ nmask = policy_nodemask(gfp, pol);
+ if (!nmask || node_isset(hpage_node, *nmask)) {
+ mpol_cond_put(pol);
+ page = __alloc_pages_node(hpage_node,
+ gfp | __GFP_THISNODE, order);
+ goto out;
+ }
+ }
+
nmask = policy_nodemask(gfp, pol);
preferred_nid = policy_node(gfp, pol, node);
page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
shmem_pseudo_vma_init(&pvma, info, hindex);
page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
- HPAGE_PMD_ORDER, &pvma, 0, numa_node_id());
+ HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
shmem_pseudo_vma_destroy(&pvma);
if (page)
prep_transhuge_page(page);