* Non-compacted format and legacy features use the cached fixed
* offsets.
*/
- if (!cpu_feature_enabled(X86_FEATURE_XSAVES) || xfeature <= XFEATURE_SSE)
+ if (!cpu_feature_enabled(X86_FEATURE_XCOMPACTED) ||
+ xfeature <= XFEATURE_SSE)
return xstate_offsets[xfeature];
/*
/*
* All components are now in init state. Read the state back so
* that init_fpstate contains all non-zero init state. This only
- * works with XSAVE, but not with XSAVEOPT and XSAVES because
+ * works with XSAVE, but not with XSAVEOPT and XSAVEC/S because
* those use the init optimization which skips writing data for
* components in init state.
*
* XSAVE could be used, but that would require to reshuffle the
- * data when XSAVES is available because XSAVES uses xstate
+ * data when XSAVEC/S is available because XSAVEC/S uses xstate
* compaction. But doing so is a pointless exercise because most
* components have an all zeros init state except for the legacy
* ones (FP and SSE). Those can be saved with FXSAVE into the
*/
static bool __init paranoid_xstate_size_valid(unsigned int kernel_size)
{
- bool compacted = cpu_feature_enabled(X86_FEATURE_XSAVES);
+ bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
+ bool xsaves = cpu_feature_enabled(X86_FEATURE_XSAVES);
unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
int i;
* Supervisor state components can be managed only by
* XSAVES.
*/
- if (!compacted && xfeature_is_supervisor(i)) {
+ if (!xsaves && xfeature_is_supervisor(i)) {
XSTATE_WARN_ON(1);
return false;
}
* the size of the *user* states. If we use it to size a buffer
* that we use 'XSAVES' on, we could potentially overflow the
* buffer because 'XSAVES' saves system states too.
+ *
+ * This also takes compaction into account. So this works for
+ * XSAVEC as well.
*/
-static unsigned int __init get_xsaves_size(void)
+static unsigned int __init get_compacted_size(void)
{
unsigned int eax, ebx, ecx, edx;
/*
* containing all the state components
* corresponding to bits currently set in
* XCR0 | IA32_XSS.
+ *
+ * When XSAVES is not available but XSAVEC is (virt), then there
+ * are no supervisor states, but XSAVEC still uses compacted
+ * format.
*/
cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
return ebx;
* Get the total size of the enabled xstates without the independent supervisor
* features.
*/
-static unsigned int __init get_xsaves_size_no_independent(void)
+static unsigned int __init get_xsave_compacted_size(void)
{
u64 mask = xfeatures_mask_independent();
unsigned int size;
if (!mask)
- return get_xsaves_size();
+ return get_compacted_size();
/* Disable independent features. */
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
* Ask the hardware what size is required of the buffer.
* This is the size required for the task->fpu buffer.
*/
- size = get_xsaves_size();
+ size = get_compacted_size();
/* Re-enable independent features so XSAVES will work on them again. */
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask);
{
/* Recompute the context size for enabled features: */
unsigned int user_size, kernel_size, kernel_default_size;
- bool compacted = cpu_feature_enabled(X86_FEATURE_XSAVES);
+ bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
/* Uncompacted user space size */
user_size = get_xsave_size_user();
/*
- * XSAVES kernel size includes supervisor states and
- * uses compacted format when available.
+ * XSAVES kernel size includes supervisor states and uses compacted
+ * format. XSAVEC uses compacted format, but does not save
+ * supervisor states.
*
- * XSAVE does not support supervisor states so
- * kernel and user size is identical.
+ * XSAVE[OPT] do not support supervisor states so kernel and user
+ * size is identical.
*/
if (compacted)
- kernel_size = get_xsaves_size_no_independent();
+ kernel_size = get_xsave_compacted_size();
else
kernel_size = user_size;
if (!cpu_feature_enabled(X86_FEATURE_XFD))
fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC;
- fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED |
- XFEATURE_MASK_SUPERVISOR_SUPPORTED;
+ if (!cpu_feature_enabled(X86_FEATURE_XSAVES))
+ fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
+ else
+ fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED |
+ XFEATURE_MASK_SUPERVISOR_SUPPORTED;
fpu_user_cfg.max_features = fpu_kernel_cfg.max_features;
fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
*/
init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC;
+ /* Set up compaction feature bit */
+ if (cpu_feature_enabled(X86_FEATURE_XSAVEC) ||
+ cpu_feature_enabled(X86_FEATURE_XSAVES))
+ setup_force_cpu_cap(X86_FEATURE_XCOMPACTED);
+
/* Enable xstate instructions to be able to continue with initialization: */
fpu__init_cpu_xstate();
pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
fpu_kernel_cfg.max_features,
fpu_kernel_cfg.max_size,
- boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
+ boot_cpu_has(X86_FEATURE_XCOMPACTED) ? "compacted" : "standard");
return;
out_disable:
if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
return NULL;
- if (cpu_feature_enabled(X86_FEATURE_XSAVES)) {
+ if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED)) {
if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr))))
return NULL;
}
* vendors into extending XFD for the pre AMX states, especially
* AVX512.
*/
- bool compacted = cpu_feature_enabled(X86_FEATURE_XSAVES);
+ bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
struct fpu *fpu = ¤t->group_leader->thread.fpu;
struct fpu_state_perm *perm;
unsigned int ksize, usize;
* XRSTORS requires these bits set in xcomp_bv, or it will
* trigger #GP:
*/
- if (cpu_feature_enabled(X86_FEATURE_XSAVES))
+ if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED))
xsave->header.xcomp_bv = mask | XCOMP_BV_COMPACTED_FORMAT;
}
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
#define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
#define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
+#define XSAVEC ".byte " REX_PREFIX "0x0f,0xc7,0x27"
#define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
#define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
#define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
: "memory")
/*
- * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
- * format and supervisor states in addition to modified optimization in
- * XSAVEOPT.
+ * If XSAVES is enabled, it replaces XSAVEC because it supports supervisor
+ * states in addition to XSAVEC.
+ *
+ * Otherwise if XSAVEC is enabled, it replaces XSAVEOPT because it supports
+ * compacted storage format in addition to XSAVEOPT.
*
* Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
* supports modified optimization which is not supported by XSAVE.
* address of the instruction where we might get an exception at.
*/
#define XSTATE_XSAVE(st, lmask, hmask, err) \
- asm volatile(ALTERNATIVE_2(XSAVE, \
+ asm volatile(ALTERNATIVE_3(XSAVE, \
XSAVEOPT, X86_FEATURE_XSAVEOPT, \
+ XSAVEC, X86_FEATURE_XSAVEC, \
XSAVES, X86_FEATURE_XSAVES) \
"\n" \
"xor %[err], %[err]\n" \