--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2018-2022 Marvell International Ltd.
+ */
+
+#include <errno.h>
+#include <i2c.h>
+#include <log.h>
+#include <malloc.h>
+#include <linux/delay.h>
+#include <display_options.h>
+
+#include <mach/cvmx-regs.h>
+#include <mach/cvmx-csr.h>
+#include <mach/cvmx-bootmem.h>
+#include <mach/octeon-model.h>
+#include <mach/cvmx-fuse.h>
+#include <mach/octeon-feature.h>
+#include <mach/cvmx-qlm.h>
+#include <mach/octeon_qlm.h>
+#include <mach/cvmx-pcie.h>
+#include <mach/cvmx-coremask.h>
+
+#include <mach/cvmx-helper.h>
+#include <mach/cvmx-helper-board.h>
+#include <mach/cvmx-helper-fdt.h>
+#include <mach/cvmx-helper-cfg.h>
+#include <mach/cvmx-helper-gpio.h>
+#include <mach/cvmx-helper-util.h>
+
+extern void octeon_i2c_unblock(int bus);
+
+static struct cvmx_fdt_sfp_info *sfp_list;
+
+/**
+ * Local allocator to handle both SE and U-Boot that also zeroes out memory
+ *
+ * @param size number of bytes to allocate
+ *
+ * @return pointer to allocated memory or NULL if out of memory.
+ * Alignment is set to 8-bytes.
+ */
+static void *cvm_sfp_alloc(size_t size)
+{
+ return calloc(size, 1);
+}
+
+/**
+ * Free allocated memory.
+ *
+ * @param ptr pointer to memory to free
+ *
+ * NOTE: This only works in U-Boot since SE does not really have a freeing
+ * mechanism. In SE the memory is zeroed out and not freed so this
+ * is a memory leak if errors occur.
+ */
+static inline void cvm_sfp_free(void *ptr, size_t size)
+{
+ free(ptr);
+}
+
+/**
+ * Select a QSFP device before accessing the EEPROM
+ *
+ * @param sfp handle for sfp/qsfp connector
+ * @param enable Set true to select, false to deselect
+ *
+ * @return 0 on success or if SFP or no select GPIO, -1 on GPIO error
+ */
+static int cvmx_qsfp_select(const struct cvmx_fdt_sfp_info *sfp, bool enable)
+{
+ /* Select is only needed for QSFP modules */
+ if (!sfp->is_qsfp) {
+ debug("%s(%s, %d): not QSFP\n", __func__, sfp->name, enable);
+ return 0;
+ }
+
+ if (dm_gpio_is_valid(&sfp->select)) {
+ /* Note that select is active low */
+ return dm_gpio_set_value(&sfp->select, !enable);
+ }
+
+ debug("%s: select GPIO unknown\n", __func__);
+ return 0;
+}
+
+static int cvmx_sfp_parse_sfp_buffer(struct cvmx_sfp_mod_info *sfp_info,
+ const uint8_t *buffer)
+{
+ u8 csum = 0;
+ bool csum_good = false;
+ int i;
+
+ /* Validate the checksum */
+ for (i = 0; i < 0x3f; i++)
+ csum += buffer[i];
+ csum_good = csum == buffer[0x3f];
+ debug("%s: Lower checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
+ buffer[0x3f]);
+ csum = 0;
+ for (i = 0x40; i < 0x5f; i++)
+ csum += buffer[i];
+ debug("%s: Upper checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
+ buffer[0x5f]);
+ if (csum != buffer[0x5f] || !csum_good) {
+ debug("Error: SFP EEPROM checksum information is incorrect\n");
+ return -1;
+ }
+
+ sfp_info->conn_type = buffer[0];
+ if (buffer[1] < 1 || buffer[1] > 7) { /* Extended ID */
+ debug("Error: Unknown SFP extended identifier 0x%x\n",
+ buffer[1]);
+ return -1;
+ }
+ if (buffer[1] != 4) {
+ debug("Module is not SFP/SFP+/SFP28/QSFP+\n");
+ return -1;
+ }
+ sfp_info->mod_type = buffer[2];
+ sfp_info->eth_comp = buffer[3] & 0xf0;
+ sfp_info->cable_comp = buffer[0x24];
+
+ /* There are several ways a cable can be marked as active or
+ * passive. 8.[2-3] specify the SFP+ cable technology. Some
+ * modules also use 3.[0-1] for Infiniband, though it's
+ * redundant.
+ */
+ if ((buffer[8] & 0x0C) == 0x08) {
+ sfp_info->limiting = true;
+ sfp_info->active_cable = true;
+ } else if ((buffer[8] & 0xC) == 0x4) {
+ sfp_info->limiting = false;
+ sfp_info->active_cable = false;
+ }
+ if ((buffer[3] & 3) == 2) {
+ sfp_info->active_cable = true;
+ sfp_info->limiting = true;
+ }
+
+ switch (sfp_info->mod_type) {
+ case CVMX_SFP_MOD_OPTICAL_LC:
+ case CVMX_SFP_MOD_OPTICAL_PIGTAIL:
+ sfp_info->copper_cable = false;
+ break;
+ case CVMX_SFP_MOD_COPPER_PIGTAIL:
+ sfp_info->copper_cable = true;
+ break;
+ case CVMX_SFP_MOD_NO_SEP_CONN:
+ switch (sfp_info->cable_comp) {
+ case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_HIGH_BER:
+ case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_LOW_BER:
+ case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_LOW_BER:
+ sfp_info->copper_cable = false;
+ sfp_info->limiting = true;
+ sfp_info->active_cable = true;
+ break;
+
+ case CVMX_SFP_CABLE_100G_SR4_25G_SR:
+ case CVMX_SFP_CABLE_100G_LR4_25G_LR:
+ case CVMX_SFP_CABLE_100G_ER4_25G_ER:
+ case CVMX_SFP_CABLE_100G_SR10:
+ case CVMX_SFP_CABLE_100G_CWDM4_MSA:
+ case CVMX_SFP_CABLE_100G_PSM4:
+ case CVMX_SFP_CABLE_100G_CWDM4:
+ case CVMX_SFP_CABLE_40G_ER4:
+ case CVMX_SFP_CABLE_4X10G_SR:
+ case CVMX_SFP_CABLE_G959_1_P1I1_2D1:
+ case CVMX_SFP_CABLE_G959_1_P1S1_2D2:
+ case CVMX_SFP_CABLE_G959_1_P1L1_2D2:
+ case CVMX_SFP_CABLE_100G_CLR4:
+ case CVMX_SFP_CABLE_100G_2_LAMBDA_DWDM:
+ case CVMX_SFP_CABLE_40G_SWDM4:
+ case CVMX_SFP_CABLE_100G_SWDM4:
+ case CVMX_SFP_CABLE_100G_PAM4_BIDI:
+ sfp_info->copper_cable = false;
+ break;
+
+ case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_HIGH_BER:
+ case CVMX_SFP_CABLE_10GBASE_T:
+ case CVMX_SFP_CABLE_10GBASE_T_SR:
+ case CVMX_SFP_CABLE_5GBASE_T:
+ case CVMX_SFP_CABLE_2_5GBASE_T:
+ sfp_info->copper_cable = true;
+ sfp_info->limiting = true;
+ sfp_info->active_cable = true;
+ break;
+
+ case CVMX_SFP_CABLE_100G_CR4_25G_CR_CA_L:
+ case CVMX_SFP_CABLE_25G_CR_CA_S:
+ case CVMX_SFP_CABLE_25G_CR_CA_N:
+ case CVMX_SFP_CABLE_40G_PSM4:
+ sfp_info->copper_cable = true;
+ break;
+
+ default:
+ switch (sfp_info->eth_comp) {
+ case CVMX_SFP_CABLE_10GBASE_ER:
+ case CVMX_SFP_CABLE_10GBASE_LRM:
+ case CVMX_SFP_CABLE_10GBASE_LR:
+ case CVMX_SFP_CABLE_10GBASE_SR:
+ sfp_info->copper_cable = false;
+ break;
+ }
+ break;
+ }
+ break;
+
+ case CVMX_SFP_MOD_RJ45:
+ debug("%s: RJ45 adapter\n", __func__);
+ sfp_info->copper_cable = true;
+ sfp_info->active_cable = true;
+ sfp_info->limiting = true;
+ break;
+ case CVMX_SFP_MOD_UNKNOWN:
+ /* The Avago 1000Base-X to 1000Base-T module reports that it
+ * is an unknown module type but the Ethernet compliance code
+ * says it is 1000Base-T. We'll change the reporting to RJ45.
+ */
+ if (buffer[6] & 8) {
+ debug("RJ45 gigabit module detected\n");
+ sfp_info->mod_type = CVMX_SFP_MOD_RJ45;
+ sfp_info->copper_cable = false;
+ sfp_info->limiting = true;
+ sfp_info->active_cable = true;
+ sfp_info->max_copper_cable_len = buffer[0x12];
+ sfp_info->rate = CVMX_SFP_RATE_1G;
+ } else {
+ debug("Unknown module type 0x%x\n", sfp_info->mod_type);
+ }
+ sfp_info->limiting = true;
+ break;
+ case CVMX_SFP_MOD_MXC_2X16:
+ debug("%s: MXC 2X16\n", __func__);
+ break;
+ default:
+ sfp_info->limiting = true;
+ break;
+ }
+
+ if (sfp_info->copper_cable)
+ sfp_info->max_copper_cable_len = buffer[0x12];
+ else
+ sfp_info->max_50um_om4_cable_length = buffer[0x12] * 10;
+
+ if (buffer[0xe])
+ sfp_info->max_single_mode_cable_length = buffer[0xe] * 1000;
+ else
+ sfp_info->max_single_mode_cable_length = buffer[0xf] * 100000;
+
+ sfp_info->max_50um_om2_cable_length = buffer[0x10] * 10;
+ sfp_info->max_62_5um_om1_cable_length = buffer[0x11] * 10;
+ sfp_info->max_50um_om3_cable_length = buffer[0x13] * 10;
+
+ if (buffer[0xc] == 0xff) {
+ if (buffer[0x42] >= 255)
+ sfp_info->rate = CVMX_SFP_RATE_100G;
+ else if (buffer[0x42] >= 160)
+ sfp_info->rate = CVMX_SFP_RATE_40G;
+ else if (buffer[0x42] >= 100)
+ sfp_info->rate = CVMX_SFP_RATE_25G;
+ else
+ sfp_info->rate = CVMX_SFP_RATE_UNKNOWN;
+ } else if (buffer[0xc] >= 100) {
+ sfp_info->rate = CVMX_SFP_RATE_10G;
+ } else if (buffer[0xc] >= 10) {
+ sfp_info->rate = CVMX_SFP_RATE_1G;
+ } else {
+ sfp_info->rate = CVMX_SFP_RATE_UNKNOWN;
+ }
+
+ if (sfp_info->rate == CVMX_SFP_RATE_UNKNOWN) {
+ switch (sfp_info->cable_comp) {
+ case CVMX_SFP_CABLE_100G_SR10:
+ case CVMX_SFP_CABLE_100G_CWDM4_MSA:
+ case CVMX_SFP_CABLE_100G_PSM4:
+ case CVMX_SFP_CABLE_100G_CWDM4:
+ case CVMX_SFP_CABLE_100G_CLR4:
+ case CVMX_SFP_CABLE_100G_2_LAMBDA_DWDM:
+ case CVMX_SFP_CABLE_100G_SWDM4:
+ case CVMX_SFP_CABLE_100G_PAM4_BIDI:
+ sfp_info->rate = CVMX_SFP_RATE_100G;
+ break;
+ case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_HIGH_BER:
+ case CVMX_SFP_CABLE_100G_SR4_25G_SR:
+ case CVMX_SFP_CABLE_100G_LR4_25G_LR:
+ case CVMX_SFP_CABLE_100G_ER4_25G_ER:
+ case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_HIGH_BER:
+ case CVMX_SFP_CABLE_100G_CR4_25G_CR_CA_L:
+ case CVMX_SFP_CABLE_25G_CR_CA_S:
+ case CVMX_SFP_CABLE_25G_CR_CA_N:
+ case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_LOW_BER:
+ case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_LOW_BER:
+ sfp_info->rate = CVMX_SFP_RATE_25G;
+ break;
+ case CVMX_SFP_CABLE_40G_ER4:
+ case CVMX_SFP_CABLE_4X10G_SR:
+ case CVMX_SFP_CABLE_40G_PSM4:
+ case CVMX_SFP_CABLE_40G_SWDM4:
+ sfp_info->rate = CVMX_SFP_RATE_40G;
+ break;
+ case CVMX_SFP_CABLE_G959_1_P1I1_2D1:
+ case CVMX_SFP_CABLE_G959_1_P1S1_2D2:
+ case CVMX_SFP_CABLE_G959_1_P1L1_2D2:
+ case CVMX_SFP_CABLE_10GBASE_T:
+ case CVMX_SFP_CABLE_10GBASE_T_SR:
+ case CVMX_SFP_CABLE_5GBASE_T:
+ case CVMX_SFP_CABLE_2_5GBASE_T:
+ sfp_info->rate = CVMX_SFP_RATE_10G;
+ break;
+ default:
+ switch (sfp_info->eth_comp) {
+ case CVMX_SFP_CABLE_10GBASE_ER:
+ case CVMX_SFP_CABLE_10GBASE_LRM:
+ case CVMX_SFP_CABLE_10GBASE_LR:
+ case CVMX_SFP_CABLE_10GBASE_SR:
+ sfp_info->rate = CVMX_SFP_RATE_10G;
+ break;
+ default:
+ sfp_info->rate = CVMX_SFP_RATE_UNKNOWN;
+ break;
+ }
+ break;
+ }
+ }
+
+ if (buffer[0xc] < 0xff)
+ sfp_info->bitrate_max = buffer[0xc] * 100;
+ else
+ sfp_info->bitrate_max = buffer[0x42] * 250;
+
+ if ((buffer[8] & 0xc) == 8) {
+ if (buffer[0x3c] & 0x4)
+ sfp_info->limiting = true;
+ }
+
+ /* Currently we only set this for 25G. FEC is required for CA-S cables
+ * and for cable lengths >= 5M as of this writing.
+ */
+ if ((sfp_info->rate == CVMX_SFP_RATE_25G &&
+ sfp_info->copper_cable) &&
+ (sfp_info->cable_comp == CVMX_SFP_CABLE_25G_CR_CA_S ||
+ sfp_info->max_copper_cable_len >= 5))
+ sfp_info->fec_required = true;
+
+ /* copy strings and vendor info, strings will be automatically NUL
+ * terminated.
+ */
+ memcpy(sfp_info->vendor_name, &buffer[0x14], 16);
+ memcpy(sfp_info->vendor_oui, &buffer[0x25], 3);
+ memcpy(sfp_info->vendor_pn, &buffer[0x28], 16);
+ memcpy(sfp_info->vendor_rev, &buffer[0x38], 4);
+ memcpy(sfp_info->vendor_sn, &buffer[0x44], 16);
+ memcpy(sfp_info->date_code, &buffer[0x54], 8);
+
+ sfp_info->cooled_laser = !!(buffer[0x40] & 4);
+ sfp_info->internal_cdr = !!(buffer[0x40] & 8);
+
+ if (buffer[0x40] & 0x20)
+ sfp_info->power_level = 3;
+ else
+ sfp_info->power_level = (buffer[0x40] & 2) ? 2 : 1;
+
+ sfp_info->diag_paging = !!(buffer[0x40] & 0x10);
+ sfp_info->linear_rx_output = !(buffer[0x40] & 1);
+ sfp_info->los_implemented = !!(buffer[0x41] & 2);
+ sfp_info->los_inverted = !!(buffer[0x41] & 4);
+ sfp_info->tx_fault_implemented = !!(buffer[0x41] & 8);
+ sfp_info->tx_disable_implemented = !!(buffer[0x41] & 0x10);
+ sfp_info->rate_select_implemented = !!(buffer[0x41] & 0x20);
+ sfp_info->tuneable_transmitter = !!(buffer[0x41] & 0x40);
+ sfp_info->rx_decision_threshold_implemented = !!(buffer[0x41] & 0x80);
+
+ sfp_info->diag_monitoring = !!(buffer[0x5c] & 0x40);
+ sfp_info->diag_rx_power_averaged = !!(buffer[0x5c] & 0x8);
+ sfp_info->diag_externally_calibrated = !!(buffer[0x5c] & 0x10);
+ sfp_info->diag_internally_calibrated = !!(buffer[0x5c] & 0x20);
+ sfp_info->diag_addr_change_required = !!(buffer[0x5c] & 0x4);
+ sfp_info->diag_soft_rate_select_control = !!(buffer[0x5d] & 2);
+ sfp_info->diag_app_select_control = !!(buffer[0x5d] & 4);
+ sfp_info->diag_soft_rate_select_control = !!(buffer[0x5d] & 8);
+ sfp_info->diag_soft_rx_los_implemented = !!(buffer[0x5d] & 0x10);
+ sfp_info->diag_soft_tx_fault_implemented = !!(buffer[0x5d] & 0x20);
+ sfp_info->diag_soft_tx_disable_implemented = !!(buffer[0x5d] & 0x40);
+ sfp_info->diag_alarm_warning_flags_implemented =
+ !!(buffer[0x5d] & 0x80);
+ sfp_info->diag_rev = buffer[0x5e];
+
+ return 0;
+}
+
+static int cvmx_sfp_parse_qsfp_buffer(struct cvmx_sfp_mod_info *sfp_info,
+ const uint8_t *buffer)
+{
+ u8 csum = 0;
+ bool csum_good = false;
+ int i;
+
+ /* Validate the checksum */
+ for (i = 0x80; i < 0xbf; i++)
+ csum += buffer[i];
+ csum_good = csum == buffer[0xbf];
+ debug("%s: Lower checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
+ buffer[0xbf]);
+ csum = 0;
+ for (i = 0xc0; i < 0xdf; i++)
+ csum += buffer[i];
+ debug("%s: Upper checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
+ buffer[0xdf]);
+ if (csum != buffer[0xdf] || !csum_good) {
+ debug("Error: SFP EEPROM checksum information is incorrect\n");
+ return -1;
+ }
+
+ sfp_info->conn_type = buffer[0x80];
+ sfp_info->mod_type = buffer[0x82];
+ sfp_info->eth_comp = buffer[0x83] & 0xf0;
+ sfp_info->cable_comp = buffer[0xa4];
+
+ switch (sfp_info->mod_type) {
+ case CVMX_SFP_MOD_COPPER_PIGTAIL:
+ case CVMX_SFP_MOD_NO_SEP_CONN:
+ debug("%s: copper pigtail or no separable cable\n", __func__);
+ /* There are several ways a cable can be marked as active or
+ * passive. 8.[2-3] specify the SFP+ cable technology. Some
+ * modules also use 3.[0-1] for Infiniband, though it's
+ * redundant.
+ */
+ sfp_info->copper_cable = true;
+ if ((buffer[0x88] & 0x0C) == 0x08) {
+ sfp_info->limiting = true;
+ sfp_info->active_cable = true;
+ } else if ((buffer[0x88] & 0xC) == 0x4) {
+ sfp_info->limiting = false;
+ sfp_info->active_cable = false;
+ }
+ if ((buffer[0x83] & 3) == 2) {
+ sfp_info->active_cable = true;
+ sfp_info->limiting = true;
+ }
+ break;
+ case CVMX_SFP_MOD_RJ45:
+ debug("%s: RJ45 adapter\n", __func__);
+ sfp_info->copper_cable = true;
+ sfp_info->active_cable = true;
+ sfp_info->limiting = true;
+ break;
+ case CVMX_SFP_MOD_UNKNOWN:
+ debug("Unknown module type\n");
+ /* The Avago 1000Base-X to 1000Base-T module reports that it
+ * is an unknown module type but the Ethernet compliance code
+ * says it is 1000Base-T. We'll change the reporting to RJ45.
+ */
+ if (buffer[0x86] & 8) {
+ sfp_info->mod_type = CVMX_SFP_MOD_RJ45;
+ sfp_info->copper_cable = false;
+ sfp_info->limiting = true;
+ sfp_info->active_cable = true;
+ sfp_info->max_copper_cable_len = buffer[0x92];
+ sfp_info->rate = CVMX_SFP_RATE_1G;
+ }
+ fallthrough;
+ default:
+ sfp_info->limiting = true;
+ break;
+ }
+
+ if (sfp_info->copper_cable)
+ sfp_info->max_copper_cable_len = buffer[0x92];
+ else
+ sfp_info->max_50um_om4_cable_length = buffer[0x92] * 10;
+
+ debug("%s: copper cable: %d, max copper cable len: %d\n", __func__,
+ sfp_info->copper_cable, sfp_info->max_copper_cable_len);
+ if (buffer[0xe])
+ sfp_info->max_single_mode_cable_length = buffer[0x8e] * 1000;
+ else
+ sfp_info->max_single_mode_cable_length = buffer[0x8f] * 100000;
+
+ sfp_info->max_50um_om2_cable_length = buffer[0x90] * 10;
+ sfp_info->max_62_5um_om1_cable_length = buffer[0x91] * 10;
+ sfp_info->max_50um_om3_cable_length = buffer[0x93] * 10;
+
+ if (buffer[0x8c] == 12) {
+ sfp_info->rate = CVMX_SFP_RATE_1G;
+ } else if (buffer[0x8c] == 103) {
+ sfp_info->rate = CVMX_SFP_RATE_10G;
+ } else if (buffer[0x8c] == 0xff) {
+ if (buffer[0xc2] == 103)
+ sfp_info->rate = CVMX_SFP_RATE_100G;
+ }
+
+ if (buffer[0x8c] < 0xff)
+ sfp_info->bitrate_max = buffer[0x8c] * 100;
+ else
+ sfp_info->bitrate_max = buffer[0xc2] * 250;
+
+ if ((buffer[0x88] & 0xc) == 8) {
+ if (buffer[0xbc] & 0x4)
+ sfp_info->limiting = true;
+ }
+
+ /* Currently we only set this for 25G. FEC is required for CA-S cables
+ * and for cable lengths >= 5M as of this writing.
+ */
+ /* copy strings and vendor info, strings will be automatically NUL
+ * terminated.
+ */
+ memcpy(sfp_info->vendor_name, &buffer[0x94], 16);
+ memcpy(sfp_info->vendor_oui, &buffer[0xa5], 3);
+ memcpy(sfp_info->vendor_pn, &buffer[0xa8], 16);
+ memcpy(sfp_info->vendor_rev, &buffer[0xb8], 4);
+ memcpy(sfp_info->vendor_sn, &buffer[0xc4], 16);
+ memcpy(sfp_info->date_code, &buffer[0xd4], 8);
+
+ sfp_info->linear_rx_output = !!(buffer[0xc0] & 1);
+ sfp_info->cooled_laser = !!(buffer[0xc0] & 4);
+ sfp_info->internal_cdr = !!(buffer[0xc0] & 8);
+
+ if (buffer[0xc0] & 0x20)
+ sfp_info->power_level = 3;
+ else
+ sfp_info->power_level = (buffer[0xc0] & 2) ? 2 : 1;
+
+ sfp_info->diag_paging = !!(buffer[0xc0] & 0x10);
+ sfp_info->los_implemented = !!(buffer[0xc1] & 2);
+ sfp_info->los_inverted = !!(buffer[0xc1] & 4);
+ sfp_info->tx_fault_implemented = !!(buffer[0xc1] & 8);
+ sfp_info->tx_disable_implemented = !!(buffer[0xc1] & 0x10);
+ sfp_info->rate_select_implemented = !!(buffer[0xc1] & 0x20);
+ sfp_info->tuneable_transmitter = !!(buffer[0xc1] & 0x40);
+ sfp_info->rx_decision_threshold_implemented = !!(buffer[0xc1] & 0x80);
+
+ sfp_info->diag_monitoring = !!(buffer[0xdc] & 0x40);
+ sfp_info->diag_rx_power_averaged = !!(buffer[0xdc] & 0x8);
+ sfp_info->diag_externally_calibrated = !!(buffer[0xdc] & 0x10);
+ sfp_info->diag_internally_calibrated = !!(buffer[0xdc] & 0x20);
+ sfp_info->diag_addr_change_required = !!(buffer[0xdc] & 0x4);
+ sfp_info->diag_soft_rate_select_control = !!(buffer[0xdd] & 2);
+ sfp_info->diag_app_select_control = !!(buffer[0xdd] & 4);
+ sfp_info->diag_soft_rate_select_control = !!(buffer[0xdd] & 8);
+ sfp_info->diag_soft_rx_los_implemented = !!(buffer[0xdd] & 0x10);
+ sfp_info->diag_soft_tx_fault_implemented = !!(buffer[0xdd] & 0x20);
+ sfp_info->diag_soft_tx_disable_implemented = !!(buffer[0xdd] & 0x40);
+ sfp_info->diag_alarm_warning_flags_implemented =
+ !!(buffer[0xdd] & 0x80);
+ sfp_info->diag_rev = buffer[0xde];
+
+ return 0;
+}
+
+static bool sfp_verify_checksum(const uint8_t *buffer)
+{
+ u8 csum = 0;
+ u8 offset;
+ bool csum_good = false;
+ int i;
+
+ switch (buffer[0]) {
+ case CVMX_SFP_CONN_QSFP:
+ case CVMX_SFP_CONN_QSFPP:
+ case CVMX_SFP_CONN_QSFP28:
+ case CVMX_SFP_CONN_MICRO_QSFP:
+ case CVMX_SFP_CONN_QSFP_DD:
+ offset = 0x80;
+ break;
+ default:
+ offset = 0;
+ break;
+ }
+ for (i = offset; i < offset + 0x3f; i++)
+ csum += buffer[i];
+ csum_good = csum == buffer[offset + 0x3f];
+ if (!csum_good) {
+ debug("%s: Lower checksum bad, got 0x%x, expected 0x%x\n",
+ __func__, csum, buffer[offset + 0x3f]);
+ return false;
+ }
+ csum = 0;
+ for (i = offset + 0x40; i < offset + 0x5f; i++)
+ csum += buffer[i];
+ if (csum != buffer[offset + 0x5f]) {
+ debug("%s: Upper checksum bad, got 0x%x, expected 0x%x\n",
+ __func__, csum, buffer[offset + 0x5f]);
+ return false;
+ }
+ return true;
+}
+
+/**
+ * Reads and parses SFP/QSFP EEPROM
+ *
+ * @param sfp sfp handle to read
+ *
+ * @return 0 for success, -1 on error.
+ */
+int cvmx_sfp_read_i2c_eeprom(struct cvmx_fdt_sfp_info *sfp)
+{
+ const struct cvmx_fdt_i2c_bus_info *bus = sfp->i2c_bus;
+ int oct_bus = cvmx_fdt_i2c_get_root_bus(bus);
+ struct udevice *dev;
+ u8 buffer[256];
+ bool is_qsfp;
+ int retry;
+ int err;
+
+ if (!bus) {
+ debug("%s(%s): Error: i2c bus undefined for eeprom\n", __func__,
+ sfp->name);
+ return -1;
+ }
+
+ is_qsfp = (sfp->sfp_info.conn_type == CVMX_SFP_CONN_QSFP ||
+ sfp->sfp_info.conn_type == CVMX_SFP_CONN_QSFPP ||
+ sfp->sfp_info.conn_type == CVMX_SFP_CONN_QSFP28 ||
+ sfp->sfp_info.conn_type == CVMX_SFP_CONN_MICRO_QSFP) ||
+ sfp->is_qsfp;
+
+ err = cvmx_qsfp_select(sfp, true);
+ if (err) {
+ debug("%s: Error selecting SFP/QSFP slot\n", __func__);
+ return err;
+ }
+
+ debug("%s: Reading eeprom from i2c address %d:0x%x\n", __func__,
+ oct_bus, sfp->i2c_eeprom_addr);
+ for (retry = 0; retry < 3; retry++) {
+ err = i2c_get_chip(bus->i2c_bus, sfp->i2c_eeprom_addr, 1, &dev);
+ if (err) {
+ debug("Cannot find I2C device: %d\n", err);
+ goto error;
+ }
+
+ err = dm_i2c_read(dev, 0, buffer, 256);
+ if (err || !sfp_verify_checksum(buffer)) {
+ debug("%s: Error %d reading eeprom at 0x%x, bus %d\n",
+ __func__, err, sfp->i2c_eeprom_addr, oct_bus);
+ debug("%s: Retry %d\n", __func__, retry + 1);
+ mdelay(1000);
+ } else {
+ break;
+ }
+ }
+ if (err) {
+ debug("%s: Error reading eeprom from SFP %s\n", __func__,
+ sfp->name);
+ return -1;
+ }
+#ifdef DEBUG
+ print_buffer(0, buffer, 1, 256, 0);
+#endif
+ memset(&sfp->sfp_info, 0, sizeof(struct cvmx_sfp_mod_info));
+
+ switch (buffer[0]) {
+ case CVMX_SFP_CONN_SFP:
+ err = cvmx_sfp_parse_sfp_buffer(&sfp->sfp_info, buffer);
+ break;
+ case CVMX_SFP_CONN_QSFP:
+ case CVMX_SFP_CONN_QSFPP:
+ case CVMX_SFP_CONN_QSFP28:
+ case CVMX_SFP_CONN_MICRO_QSFP:
+ err = cvmx_sfp_parse_qsfp_buffer(&sfp->sfp_info, buffer);
+ break;
+ default:
+ debug("%s: Unknown SFP transceiver type 0x%x\n", __func__,
+ buffer[0]);
+ err = -1;
+ break;
+ }
+
+error:
+ if (is_qsfp)
+ err |= cvmx_qsfp_select(sfp, false);
+
+ if (!err) {
+ sfp->valid = true;
+ sfp->sfp_info.valid = true;
+ } else {
+ sfp->valid = false;
+ sfp->sfp_info.valid = false;
+ }
+
+ return err;
+}
+
+/**
+ * Function called to check and return the status of the mod_abs pin or
+ * mod_pres pin for QSFPs.
+ *
+ * @param sfp Handle to SFP information.
+ * @param data User-defined data passed to the function
+ *
+ * @return 0 if absent, 1 if present, -1 on error
+ */
+int cvmx_sfp_check_mod_abs(struct cvmx_fdt_sfp_info *sfp, void *data)
+{
+ int val;
+ int err = 0;
+ int mode;
+
+ if (!dm_gpio_is_valid(&sfp->mod_abs)) {
+ debug("%s: Error: mod_abs not set for %s\n", __func__,
+ sfp->name);
+ return -1;
+ }
+ val = dm_gpio_get_value(&sfp->mod_abs);
+ debug("%s(%s, %p) mod_abs: %d\n", __func__, sfp->name, data, val);
+ if (val >= 0 && val != sfp->last_mod_abs && sfp->mod_abs_changed) {
+ err = 0;
+ if (!val) {
+ err = cvmx_sfp_read_i2c_eeprom(sfp);
+ if (err)
+ debug("%s: Error reading SFP %s EEPROM\n",
+ __func__, sfp->name);
+ }
+ err = sfp->mod_abs_changed(sfp, val, sfp->mod_abs_changed_data);
+ }
+ debug("%s(%s (%p)): Last mod_abs: %d, current: %d, changed: %p, rc: %d, next: %p, caller: %p\n",
+ __func__, sfp->name, sfp, sfp->last_mod_abs, val,
+ sfp->mod_abs_changed, err, sfp->next_iface_sfp,
+ __builtin_return_address(0));
+
+ if (err >= 0) {
+ sfp->last_mod_abs = val;
+ mode = cvmx_helper_interface_get_mode(sfp->xiface);
+ cvmx_sfp_validate_module(sfp, mode);
+ } else {
+ debug("%s: mod_abs_changed for %s returned error\n", __func__,
+ sfp->name);
+ }
+
+ return err < 0 ? err : val;
+}
+
+/**
+ * Reads the EEPROMs of all SFP modules.
+ *
+ * @return 0 for success
+ */
+int cvmx_sfp_read_all_modules(void)
+{
+ struct cvmx_fdt_sfp_info *sfp;
+ int val;
+ bool error = false;
+ int rc;
+
+ for (sfp = sfp_list; sfp; sfp = sfp->next) {
+ if (dm_gpio_is_valid(&sfp->mod_abs)) {
+ /* Check if module absent */
+ val = dm_gpio_get_value(&sfp->mod_abs);
+ sfp->last_mod_abs = val;
+ if (val)
+ continue;
+ }
+ rc = cvmx_sfp_read_i2c_eeprom(sfp);
+ if (rc) {
+ debug("%s: Error reading eeprom from SFP %s\n",
+ __func__, sfp->name);
+ error = true;
+ }
+ }
+
+ return error ? -1 : 0;
+}
+
+/**
+ * Registers a function to be called whenever the mod_abs/mod_pres signal
+ * changes.
+ *
+ * @param sfp Handle to SFP data structure
+ * @param mod_abs_changed Function called whenever mod_abs is changed
+ * or NULL to remove.
+ * @param mod_abs_changed_data User-defined data passed to
+ * mod_abs_changed
+ *
+ * @return 0 for success
+ *
+ * @NOTE: If multiple SFP slots are linked together, all subsequent slots
+ * will also be registered for the same handler.
+ */
+int cvmx_sfp_register_mod_abs_changed(struct cvmx_fdt_sfp_info *sfp,
+ int (*mod_abs_changed)(struct cvmx_fdt_sfp_info *sfp,
+ int val, void *data),
+ void *mod_abs_changed_data)
+{
+ sfp->mod_abs_changed = mod_abs_changed;
+ sfp->mod_abs_changed_data = mod_abs_changed_data;
+
+ sfp->last_mod_abs = -2; /* undefined */
+
+ return 0;
+}
+
+/**
+ * Parses a SFP slot from the device tree
+ *
+ * @param sfp SFP handle to store data in
+ * @param fdt_addr Address of flat device tree
+ * @param of_offset Node in device tree for SFP slot
+ *
+ * @return 0 on success, -1 on error
+ */
+static int cvmx_sfp_parse_sfp(struct cvmx_fdt_sfp_info *sfp, ofnode node)
+{
+ struct ofnode_phandle_args phandle;
+ int err;
+
+ sfp->name = ofnode_get_name(node);
+ sfp->of_offset = ofnode_to_offset(node);
+
+ err = gpio_request_by_name_nodev(node, "tx_disable", 0,
+ &sfp->tx_disable, GPIOD_IS_OUT);
+ if (err) {
+ printf("%s: tx_disable not found in DT!\n", __func__);
+ return -ENODEV;
+ }
+ dm_gpio_set_value(&sfp->tx_disable, 0);
+
+ err = gpio_request_by_name_nodev(node, "mod_abs", 0,
+ &sfp->mod_abs, GPIOD_IS_IN);
+ if (err) {
+ printf("%s: mod_abs not found in DT!\n", __func__);
+ return -ENODEV;
+ }
+
+ err = gpio_request_by_name_nodev(node, "tx_error", 0,
+ &sfp->tx_error, GPIOD_IS_IN);
+ if (err) {
+ printf("%s: tx_error not found in DT!\n", __func__);
+ return -ENODEV;
+ }
+
+ err = gpio_request_by_name_nodev(node, "rx_los", 0,
+ &sfp->rx_los, GPIOD_IS_IN);
+ if (err) {
+ printf("%s: rx_los not found in DT!\n", __func__);
+ return -ENODEV;
+ }
+
+ err = ofnode_parse_phandle_with_args(node, "eeprom", NULL, 0, 0,
+ &phandle);
+ if (!err) {
+ sfp->i2c_eeprom_addr = ofnode_get_addr(phandle.node);
+ debug("%s: eeprom address: 0x%x\n", __func__,
+ sfp->i2c_eeprom_addr);
+
+ debug("%s: Getting eeprom i2c bus for %s\n", __func__,
+ sfp->name);
+ sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
+ }
+
+ err = ofnode_parse_phandle_with_args(node, "diag", NULL, 0, 0,
+ &phandle);
+ if (!err) {
+ sfp->i2c_diag_addr = ofnode_get_addr(phandle.node);
+ if (!sfp->i2c_bus)
+ sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
+ }
+
+ sfp->last_mod_abs = -2;
+ sfp->last_rx_los = -2;
+
+ if (!sfp->i2c_bus) {
+ debug("%s(%s): Error: could not get i2c bus from device tree\n",
+ __func__, sfp->name);
+ err = -1;
+ }
+
+ if (err) {
+ dm_gpio_free(sfp->tx_disable.dev, &sfp->tx_disable);
+ dm_gpio_free(sfp->mod_abs.dev, &sfp->mod_abs);
+ dm_gpio_free(sfp->tx_error.dev, &sfp->tx_error);
+ dm_gpio_free(sfp->rx_los.dev, &sfp->rx_los);
+ } else {
+ sfp->valid = true;
+ }
+
+ return err;
+}
+
+/**
+ * Parses a QSFP slot from the device tree
+ *
+ * @param sfp SFP handle to store data in
+ * @param fdt_addr Address of flat device tree
+ * @param of_offset Node in device tree for SFP slot
+ *
+ * @return 0 on success, -1 on error
+ */
+static int cvmx_sfp_parse_qsfp(struct cvmx_fdt_sfp_info *sfp, ofnode node)
+{
+ struct ofnode_phandle_args phandle;
+ int err;
+
+ sfp->is_qsfp = true;
+ sfp->name = ofnode_get_name(node);
+ sfp->of_offset = ofnode_to_offset(node);
+
+ err = gpio_request_by_name_nodev(node, "lp_mode", 0,
+ &sfp->lp_mode, GPIOD_IS_OUT);
+ if (err) {
+ printf("%s: lp_mode not found in DT!\n", __func__);
+ return -ENODEV;
+ }
+
+ err = gpio_request_by_name_nodev(node, "mod_prs", 0,
+ &sfp->mod_abs, GPIOD_IS_IN);
+ if (err) {
+ printf("%s: mod_prs not found in DT!\n", __func__);
+ return -ENODEV;
+ }
+
+ err = gpio_request_by_name_nodev(node, "select", 0,
+ &sfp->select, GPIOD_IS_IN);
+ if (err) {
+ printf("%s: select not found in DT!\n", __func__);
+ return -ENODEV;
+ }
+
+ err = gpio_request_by_name_nodev(node, "reset", 0,
+ &sfp->reset, GPIOD_IS_OUT);
+ if (err) {
+ printf("%s: reset not found in DT!\n", __func__);
+ return -ENODEV;
+ }
+
+ err = gpio_request_by_name_nodev(node, "interrupt", 0,
+ &sfp->interrupt, GPIOD_IS_IN);
+ if (err) {
+ printf("%s: interrupt not found in DT!\n", __func__);
+ return -ENODEV;
+ }
+
+ err = ofnode_parse_phandle_with_args(node, "eeprom", NULL, 0, 0,
+ &phandle);
+ if (!err) {
+ sfp->i2c_eeprom_addr = ofnode_get_addr(phandle.node);
+ sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
+ }
+
+ err = ofnode_parse_phandle_with_args(node, "diag", NULL, 0, 0,
+ &phandle);
+ if (!err) {
+ sfp->i2c_diag_addr = ofnode_get_addr(phandle.node);
+ if (!sfp->i2c_bus)
+ sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
+ }
+
+ sfp->last_mod_abs = -2;
+ sfp->last_rx_los = -2;
+
+ if (!sfp->i2c_bus) {
+ cvmx_printf("%s(%s): Error: could not get i2c bus from device tree\n",
+ __func__, sfp->name);
+ err = -1;
+ }
+
+ if (err) {
+ dm_gpio_free(sfp->lp_mode.dev, &sfp->lp_mode);
+ dm_gpio_free(sfp->mod_abs.dev, &sfp->mod_abs);
+ dm_gpio_free(sfp->select.dev, &sfp->select);
+ dm_gpio_free(sfp->reset.dev, &sfp->reset);
+ dm_gpio_free(sfp->interrupt.dev, &sfp->interrupt);
+ } else {
+ sfp->valid = true;
+ }
+
+ return err;
+}
+
+/**
+ * Parses the device tree for SFP and QSFP slots
+ *
+ * @param fdt_addr Address of flat device-tree
+ *
+ * @return 0 for success, -1 on error
+ */
+int cvmx_sfp_parse_device_tree(const void *fdt_addr)
+{
+ struct cvmx_fdt_sfp_info *sfp, *first_sfp = NULL, *last_sfp = NULL;
+ ofnode node;
+ int err = 0;
+ int reg;
+ static bool parsed;
+
+ debug("%s(%p): Parsing...\n", __func__, fdt_addr);
+ if (parsed) {
+ debug("%s(%p): Already parsed\n", __func__, fdt_addr);
+ return 0;
+ }
+
+ ofnode_for_each_compatible_node(node, "ethernet,sfp-slot") {
+ if (!ofnode_valid(node))
+ continue;
+
+ sfp = cvm_sfp_alloc(sizeof(*sfp));
+ if (!sfp)
+ return -1;
+
+ err = cvmx_sfp_parse_sfp(sfp, node);
+ if (!err) {
+ if (!sfp_list)
+ sfp_list = sfp;
+ if (last_sfp)
+ last_sfp->next = sfp;
+ sfp->prev = last_sfp;
+ last_sfp = sfp;
+ debug("%s: parsed %s\n", __func__, sfp->name);
+ } else {
+ debug("%s: Error parsing SFP at node %s\n",
+ __func__, ofnode_get_name(node));
+ return err;
+ }
+ }
+
+ ofnode_for_each_compatible_node(node, "ethernet,qsfp-slot") {
+ if (!ofnode_valid(node))
+ continue;
+
+ sfp = cvm_sfp_alloc(sizeof(*sfp));
+ if (!sfp)
+ return -1;
+
+ err = cvmx_sfp_parse_qsfp(sfp, node);
+ if (!err) {
+ if (!sfp_list)
+ sfp_list = sfp;
+ if (last_sfp)
+ last_sfp->next = sfp;
+ sfp->prev = last_sfp;
+ last_sfp = sfp;
+ debug("%s: parsed %s\n", __func__, sfp->name);
+ } else {
+ debug("%s: Error parsing QSFP at node %s\n",
+ __func__, ofnode_get_name(node));
+ return err;
+ }
+ }
+
+ if (!octeon_has_feature(OCTEON_FEATURE_BGX))
+ return 0;
+
+ err = 0;
+ ofnode_for_each_compatible_node(node, "cavium,octeon-7890-bgx-port") {
+ int sfp_nodes[4];
+ ofnode sfp_ofnodes[4];
+ int num_sfp_nodes;
+ u64 reg_addr;
+ struct cvmx_xiface xi;
+ int xiface, index;
+ cvmx_helper_interface_mode_t mode;
+ int i;
+ int rc;
+
+ if (!ofnode_valid(node))
+ break;
+
+ num_sfp_nodes = ARRAY_SIZE(sfp_nodes);
+ rc = cvmx_ofnode_lookup_phandles(node, "sfp-slot",
+ &num_sfp_nodes, sfp_ofnodes);
+ if (rc != 0 || num_sfp_nodes < 1)
+ rc = cvmx_ofnode_lookup_phandles(node, "qsfp-slot",
+ &num_sfp_nodes,
+ sfp_ofnodes);
+ /* If no SFP or QSFP slot found, go to next port */
+ if (rc < 0)
+ continue;
+
+ last_sfp = NULL;
+ for (i = 0; i < num_sfp_nodes; i++) {
+ sfp = cvmx_sfp_find_slot_by_fdt_node(ofnode_to_offset(sfp_ofnodes[i]));
+ debug("%s: Adding sfp %s (%p) to BGX port\n",
+ __func__, sfp->name, sfp);
+ if (last_sfp)
+ last_sfp->next_iface_sfp = sfp;
+ else
+ first_sfp = sfp;
+ last_sfp = sfp;
+ }
+ if (!first_sfp) {
+ debug("%s: Error: could not find SFP slot for BGX port %s\n",
+ __func__,
+ fdt_get_name(fdt_addr, sfp_nodes[0],
+ NULL));
+ err = -1;
+ break;
+ }
+
+ /* Get the port index */
+ reg = ofnode_get_addr(node);
+ if (reg < 0) {
+ debug("%s: Error: could not get BGX port reg value\n",
+ __func__);
+ err = -1;
+ break;
+ }
+ index = reg;
+
+ /* Get BGX node and address */
+ reg_addr = ofnode_get_addr(ofnode_get_parent(node));
+ /* Extrace node */
+ xi.node = cvmx_csr_addr_to_node(reg_addr);
+ /* Extract reg address */
+ reg_addr = cvmx_csr_addr_strip_node(reg_addr);
+ if ((reg_addr & 0xFFFFFFFFF0000000) !=
+ 0x00011800E0000000) {
+ debug("%s: Invalid BGX address 0x%llx\n",
+ __func__, (unsigned long long)reg_addr);
+ xi.node = -1;
+ err = -1;
+ break;
+ }
+
+ /* Extract interface from address */
+ xi.interface = (reg_addr >> 24) & 0x0F;
+ /* Convert to xiface */
+ xiface = cvmx_helper_node_interface_to_xiface(xi.node,
+ xi.interface);
+ debug("%s: Parsed %d SFP slots for interface 0x%x, index %d\n",
+ __func__, num_sfp_nodes, xiface, index);
+
+ mode = cvmx_helper_interface_get_mode(xiface);
+ for (sfp = first_sfp; sfp; sfp = sfp->next_iface_sfp) {
+ sfp->xiface = xiface;
+ sfp->index = index;
+ /* Convert to IPD port */
+ sfp->ipd_port[0] =
+ cvmx_helper_get_ipd_port(xiface, index);
+ debug("%s: sfp %s (%p) xi: 0x%x, index: 0x%x, node: %d, mode: 0x%x, next: %p\n",
+ __func__, sfp->name, sfp, sfp->xiface,
+ sfp->index, xi.node, mode,
+ sfp->next_iface_sfp);
+ if (mode == CVMX_HELPER_INTERFACE_MODE_XLAUI ||
+ mode == CVMX_HELPER_INTERFACE_MODE_40G_KR4)
+ for (i = 1; i < 4; i++)
+ sfp->ipd_port[i] = -1;
+ else
+ for (i = 1; i < 4; i++)
+ sfp->ipd_port[i] =
+ cvmx_helper_get_ipd_port(
+ xiface, i);
+ }
+ cvmx_helper_cfg_set_sfp_info(xiface, index, first_sfp);
+ }
+
+ if (!err) {
+ parsed = true;
+ cvmx_sfp_read_all_modules();
+ }
+
+ return err;
+}
+
+/**
+ * Given a fdt node offset find the corresponding SFP or QSFP slot
+ *
+ * @param of_offset flat device tree node offset
+ *
+ * @return pointer to SFP data structure or NULL if not found
+ */
+struct cvmx_fdt_sfp_info *cvmx_sfp_find_slot_by_fdt_node(int of_offset)
+{
+ struct cvmx_fdt_sfp_info *sfp = sfp_list;
+
+ while (sfp) {
+ if (sfp->of_offset == of_offset)
+ return sfp;
+ sfp = sfp->next;
+ }
+ return NULL;
+}
+
+static bool cvmx_sfp_validate_quad(struct cvmx_fdt_sfp_info *sfp,
+ struct cvmx_phy_gpio_leds *leds)
+{
+ bool multi_led = leds && (leds->next);
+ bool error = false;
+ int mod_abs;
+
+ do {
+ /* Skip missing modules */
+ if (dm_gpio_is_valid(&sfp->mod_abs))
+ mod_abs = dm_gpio_get_value(&sfp->mod_abs);
+ else
+ mod_abs = 0;
+ if (!mod_abs) {
+ if (cvmx_sfp_read_i2c_eeprom(sfp)) {
+ debug("%s: Error reading eeprom for %s\n",
+ __func__, sfp->name);
+ }
+ if (sfp->sfp_info.rate < CVMX_SFP_RATE_10G) {
+ cvmx_helper_leds_show_error(leds, true);
+ error = true;
+ } else if (sfp->sfp_info.rate >= CVMX_SFP_RATE_10G) {
+ /* We don't support 10GBase-T modules in
+ * this mode.
+ */
+ switch (sfp->sfp_info.cable_comp) {
+ case CVMX_SFP_CABLE_10GBASE_T:
+ case CVMX_SFP_CABLE_10GBASE_T_SR:
+ case CVMX_SFP_CABLE_5GBASE_T:
+ case CVMX_SFP_CABLE_2_5GBASE_T:
+ cvmx_helper_leds_show_error(leds, true);
+ error = true;
+ break;
+ default:
+ break;
+ }
+ }
+ } else if (multi_led) {
+ cvmx_helper_leds_show_error(leds, false);
+ }
+
+ if (multi_led && leds->next)
+ leds = leds->next;
+ sfp = sfp->next_iface_sfp;
+ } while (sfp);
+
+ if (!multi_led)
+ cvmx_helper_leds_show_error(leds, error);
+
+ return error;
+}
+
+/**
+ * Validates if the module is correct for the specified port
+ *
+ * @param[in] sfp SFP port to check
+ * @param xiface interface
+ * @param index port index
+ * @param speed link speed, -1 if unknown
+ * @param mode interface mode
+ *
+ * @return true if module is valid, false if invalid
+ * NOTE: This will also toggle the error LED, if present
+ */
+bool cvmx_sfp_validate_module(struct cvmx_fdt_sfp_info *sfp, int mode)
+{
+ const struct cvmx_sfp_mod_info *mod_info = &sfp->sfp_info;
+ int xiface = sfp->xiface;
+ int index = sfp->index;
+ struct cvmx_phy_gpio_leds *leds;
+ bool error = false;
+ bool quad_mode = false;
+
+ debug("%s(%s, 0x%x, 0x%x, 0x%x)\n", __func__, sfp->name, xiface, index,
+ mode);
+ if (!sfp) {
+ debug("%s: Error: sfp is NULL\n", __func__);
+ return false;
+ }
+ /* No module is valid */
+ leds = cvmx_helper_get_port_phy_leds(xiface, index);
+ if (!leds)
+ debug("%s: No leds for 0x%x:0x%x\n", __func__, xiface, index);
+
+ if (mode != CVMX_HELPER_INTERFACE_MODE_XLAUI &&
+ mode != CVMX_HELPER_INTERFACE_MODE_40G_KR4 && !sfp->is_qsfp &&
+ sfp->last_mod_abs && leds) {
+ cvmx_helper_leds_show_error(leds, false);
+ debug("%s: %s: last_mod_abs: %d, no error\n", __func__,
+ sfp->name, sfp->last_mod_abs);
+ return true;
+ }
+
+ switch (mode) {
+ case CVMX_HELPER_INTERFACE_MODE_RGMII:
+ case CVMX_HELPER_INTERFACE_MODE_GMII:
+ case CVMX_HELPER_INTERFACE_MODE_SGMII:
+ case CVMX_HELPER_INTERFACE_MODE_QSGMII:
+ case CVMX_HELPER_INTERFACE_MODE_AGL:
+ case CVMX_HELPER_INTERFACE_MODE_SPI:
+ if ((mod_info->active_cable &&
+ mod_info->rate != CVMX_SFP_RATE_1G) ||
+ mod_info->rate < CVMX_SFP_RATE_1G)
+ error = true;
+ break;
+ case CVMX_HELPER_INTERFACE_MODE_RXAUI:
+ case CVMX_HELPER_INTERFACE_MODE_XAUI:
+ case CVMX_HELPER_INTERFACE_MODE_10G_KR:
+ case CVMX_HELPER_INTERFACE_MODE_XFI:
+ if ((mod_info->active_cable &&
+ mod_info->rate != CVMX_SFP_RATE_10G) ||
+ mod_info->rate < CVMX_SFP_RATE_10G)
+ error = true;
+ break;
+ case CVMX_HELPER_INTERFACE_MODE_XLAUI:
+ case CVMX_HELPER_INTERFACE_MODE_40G_KR4:
+ if (!sfp->is_qsfp) {
+ quad_mode = true;
+ error = cvmx_sfp_validate_quad(sfp, leds);
+ } else {
+ if ((mod_info->active_cable &&
+ mod_info->rate != CVMX_SFP_RATE_40G) ||
+ mod_info->rate < CVMX_SFP_RATE_25G)
+ error = true;
+ }
+ break;
+ default:
+ debug("%s: Unsupported interface mode %d on xiface 0x%x\n",
+ __func__, mode, xiface);
+ return false;
+ }
+ debug("%s: %s: error: %d\n", __func__, sfp->name, error);
+ if (leds && !quad_mode)
+ cvmx_helper_leds_show_error(leds, error);
+
+ return !error;
+}