* Pablo Neira Ayuso <pablo@netfilter.org>
*
* ==========================================================================
- *
+ */
+
+/**
+ * DOC: ts_intro
* INTRODUCTION
*
* The textsearch infrastructure provides text searching facilities for
*
* ARCHITECTURE
*
- * User
+ * .. code-block:: none
+ *
+ * User
* +----------------+
* | finish()|<--------------(6)-----------------+
* |get_next_block()|<--------------(5)---------------+ |
* | (3)|----->| find()/next() |-----------+ |
* | (7)|----->| destroy() |----------------------+
* +----------------+ +---------------+
- *
- * (1) User configures a search by calling _prepare() specifying the
- * search parameters such as the pattern and algorithm name.
+ *
+ * (1) User configures a search by calling textsearch_prepare() specifying
+ * the search parameters such as the pattern and algorithm name.
* (2) Core requests the algorithm to allocate and initialize a search
* configuration according to the specified parameters.
- * (3) User starts the search(es) by calling _find() or _next() to
- * fetch subsequent occurrences. A state variable is provided
- * to the algorithm to store persistent variables.
+ * (3) User starts the search(es) by calling textsearch_find() or
+ * textsearch_next() to fetch subsequent occurrences. A state variable
+ * is provided to the algorithm to store persistent variables.
* (4) Core eventually resets the search offset and forwards the find()
* request to the algorithm.
* (5) Algorithm calls get_next_block() provided by the user continuously
* to fetch the data to be searched in block by block.
* (6) Algorithm invokes finish() after the last call to get_next_block
* to clean up any leftovers from get_next_block. (Optional)
- * (7) User destroys the configuration by calling _destroy().
+ * (7) User destroys the configuration by calling textsearch_destroy().
* (8) Core notifies the algorithm to destroy algorithm specific
* allocations. (Optional)
*
* amount of times and even in parallel as long as a separate struct
* ts_state variable is provided to every instance.
*
- * The actual search is performed by either calling textsearch_find_-
- * continuous() for linear data or by providing an own get_next_block()
- * implementation and calling textsearch_find(). Both functions return
+ * The actual search is performed by either calling
+ * textsearch_find_continuous() for linear data or by providing
+ * an own get_next_block() implementation and
+ * calling textsearch_find(). Both functions return
* the position of the first occurrence of the pattern or UINT_MAX if
* no match was found. Subsequent occurrences can be found by calling
* textsearch_next() regardless of the linearity of the data.
* Once you're done using a configuration it must be given back via
* textsearch_destroy.
*
- * EXAMPLE
+ * EXAMPLE::
*
* int pos;
* struct ts_config *conf;
* goto errout;
* }
*
- * pos = textsearch_find_continuous(conf, &state, example, strlen(example));
+ * pos = textsearch_find_continuous(conf, \&state, example, strlen(example));
* if (pos != UINT_MAX)
- * panic("Oh my god, dancing chickens at %d\n", pos);
+ * panic("Oh my god, dancing chickens at \%d\n", pos);
*
* textsearch_destroy(conf);
- * ==========================================================================
*/
+/* ========================================================================== */
#include <linux/module.h>
#include <linux/types.h>
*
* Returns the position of first occurrence of the pattern or
* %UINT_MAX if no occurrence was found.
- */
+ */
unsigned int textsearch_find_continuous(struct ts_config *conf,
struct ts_state *state,
const void *data, unsigned int len)