* device), and otherwise need to fail the attach operation.
*
* The exporter should also in general check whether the current
- * allocation fullfills the DMA constraints of the new device. If this
+ * allocation fulfills the DMA constraints of the new device. If this
* is not the case, and the allocation cannot be moved, it should also
* fail the attach operation.
*
*
* Returns:
*
- * A &sg_table scatter list of or the backing storage of the DMA buffer,
+ * A &sg_table scatter list of the backing storage of the DMA buffer,
* already mapped into the device address space of the &device attached
* with the provided &dma_buf_attachment. The addresses and lengths in
* the scatter list are PAGE_SIZE aligned.
*
* This is called by dma_buf_unmap_attachment() and should unmap and
* release the &sg_table allocated in @map_dma_buf, and it is mandatory.
- * For static dma_buf handling this might also unpins the backing
+ * For static dma_buf handling this might also unpin the backing
* storage if this is the last mapping of the DMA buffer.
*/
void (*unmap_dma_buf)(struct dma_buf_attachment *,
* This callback is used by the dma_buf_mmap() function
*
* Note that the mapping needs to be incoherent, userspace is expected
- * to braket CPU access using the DMA_BUF_IOCTL_SYNC interface.
+ * to bracket CPU access using the DMA_BUF_IOCTL_SYNC interface.
*
* Because dma-buf buffers have invariant size over their lifetime, the
* dma-buf core checks whether a vma is too large and rejects such
/**
* dma_buf_attachment_is_dynamic - check if a DMA-buf attachment uses dynamic
- * mappinsg
+ * mappings
* @attach: the DMA-buf attachment to check
*
* Returns true if a DMA-buf importer wants to call the map/unmap functions with