]> git.baikalelectronics.ru Git - arm-tf.git/commitdiff
docs: add Juno runtime instrumentation data
authorHarrison Mutai <harrison.mutai@arm.com>
Wed, 17 May 2023 12:09:16 +0000 (13:09 +0100)
committerHarrison Mutai <harrison.mutai@arm.com>
Thu, 18 May 2023 08:32:14 +0000 (09:32 +0100)
Add results from running the TFTF test suite Runtime Instrumentation on Juno.

Change-Id: I4c5b64e1a80b5b88e42835f0700294a02edc8032
Signed-off-by: Harrison Mutai <harrison.mutai@arm.com>
docs/perf/psci-performance-juno.rst

index 74186692248d6c6a8d7269dffb60b1cf9913e05e..7a484b88e513e3f2be6230c442eaa372650a27ad 100644 (file)
@@ -25,62 +25,189 @@ x Cortex-A57 clusters running at the following frequencies:
 Juno supports CPU, cluster and system power down states, corresponding to power
 levels 0, 1 and 2 respectively. It does not support any retention states.
 
-We used the upstream `TF master as of 31/01/2017`_, building the platform using
-the ``ENABLE_RUNTIME_INSTRUMENTATION`` option:
-
-.. code:: shell
-
-    make PLAT=juno ENABLE_RUNTIME_INSTRUMENTATION=1 \
-        SCP_BL2=<path/to/scp-fw.bin>                \
-        BL33=<path/to/test-fw.bin>                  \
-        all fip
-
-When using the debug build of TF, there was no noticeable difference in the
-results.
-
-The tests are based on an ARM-internal test framework. The release build of this
-framework was used because the results in the debug build became skewed; the
-console output prevented some of the tests from executing in parallel.
-
-The tests consist of both parallel and sequential tests, which are broadly
-described as follows:
-
-- **Parallel Tests** This type of test powers on all the non-lead CPUs and
-  brings them and the lead CPU to a common synchronization point.  The lead CPU
-  then initiates the test on all CPUs in parallel.
+Given that runtime instrumentation using PMF is invasive, there is a small
+(unquantified) overhead on the results. PMF uses the generic counter for
+timestamps, which runs at 50MHz on Juno.
 
-- **Sequential Tests** This type of test powers on each non-lead CPU in
-  sequence. The lead CPU initiates the test on a non-lead CPU then waits for the
-  test to complete before proceeding to the next non-lead CPU. The lead CPU then
-  executes the test on itself.
+The following source trees and binaries were used:
+
+- TF-A [`v2.9-rc0`_]
+- TFTF [`v2.9-rc0`_]
+
+Please see the Runtime Instrumentation `Testing Methodology`_ page for more
+details.
+
+Procedure
+---------
+
+#. Build TFTF with runtime instrumentation enabled:
+
+    .. code:: shell
+
+        make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
+            TESTS=runtime-instrumentation all
+
+#. Fetch Juno's SCP binary from TF-A's archive:
+
+    .. code:: shell
+
+        curl --fail --connect-timeout 5 --retry 5 -sLS -o scp_bl2.bin \
+            https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/juno/release/juno-bl2.bin
+
+#. Build TF-A with the following build options:
+
+    .. code:: shell
+
+        make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
+            BL33="/path/to/tftf.bin" SCP_BL2="scp_bl2.bin" \
+            ENABLE_RUNTIME_INSTRUMENTATION=1 fiptool all fip
+
+#. Load the following images onto the development board: ``fip.bin``,
+   ``scp_bl2.bin``.
+
+Results
+-------
+
+``CPU_SUSPEND`` to deepest power level
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
+        parallel
+
+    +---------+------+-----------+---------+-------------+
+    | Cluster | Core | Powerdown | Wakekup | Cache Flush |
+    +=========+======+===========+=========+=============+
+    |    0    |  0   |   243.76  |  239.92 |     6.32    |
+    +---------+------+-----------+---------+-------------+
+    |    0    |  1   |   663.5   |  30.32  |    167.82   |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  0   |   105.12  |  22.84  |     5.88    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  1   |   384.16  |  19.06  |     4.7     |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  2   |   523.98  |  270.46 |     4.74    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  3   |   950.54  |  220.9  |     89.2    |
+    +---------+------+-----------+---------+-------------+
+
+.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
+        serial
+
+    +---------+------+-----------+---------+-------------+
+    | Cluster | Core | Powerdown | Wakekup | Cache Flush |
+    +=========+======+===========+=========+=============+
+    |    0    |  0   |   266.96  |  31.74  |    167.92   |
+    +---------+------+-----------+---------+-------------+
+    |    0    |  1   |   266.9   |  31.52  |    167.82   |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  0   |   279.86  |  23.42  |    87.52    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  1   |   101.38  |   18.8  |     4.64    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  2   |   101.18  |  19.28  |     4.64    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  3   |   101.32  |  19.02  |     4.62    |
+    +---------+------+-----------+---------+-------------+
+
+``CPU_SUSPEND`` to power level 0
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in
+        parallel
+
+    +---------+------+-----------+---------+-------------+
+    | Cluster | Core | Powerdown | Wakekup | Cache Flush |
+    +=========+======+===========+=========+=============+
+    +---------+------+-----------+---------+-------------+
+    |    0    |  0   |   661.94  |  22.88  |     9.66    |
+    +---------+------+-----------+---------+-------------+
+    |    0    |  1   |   801.64  |  23.38  |     9.62    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  0   |   105.56  |  16.02  |     8.12    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  1   |   245.42  |  16.26  |     7.78    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  2   |   384.42  |   16.1  |     7.84    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  3   |   523.74  |   15.4  |     8.02    |
+    +---------+------+-----------+---------+-------------+
+
+.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in serial
+
+    +---------+------+-----------+---------+-------------+
+    | Cluster | Core | Powerdown | Wakekup | Cache Flush |
+    +=========+======+===========+=========+=============+
+    |    0    |  0   |   102.16  |  23.64  |     6.7     |
+    +---------+------+-----------+---------+-------------+
+    |    0    |  1   |   101.66  |  23.78  |     6.6     |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  0   |   277.74  |  15.96  |     4.66    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  1   |    98.0   |  15.88  |     4.64    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  2   |   97.66   |  15.88  |     4.62    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  3   |   97.76   |  15.38  |     4.64    |
+    +---------+------+-----------+---------+-------------+
+
+``CPU_OFF`` on all non-lead CPUs
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+``CPU_OFF`` on all non-lead CPUs in sequence then, ``CPU_SUSPEND`` on the lead
+core to the deepest power level.
+
+.. table:: ``CPU_OFF`` latencies (µs) on all non-lead CPUs
+
+    +---------+------+-----------+---------+-------------+
+    | Cluster | Core | Powerdown | Wakekup | Cache Flush |
+    +=========+======+===========+=========+=============+
+    |    0    |  0   |   265.38  |  34.12  |    167.36   |
+    +---------+------+-----------+---------+-------------+
+    |    0    |  1   |   265.72  |  33.98  |    167.48   |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  0   |   185.3   |  23.18  |    87.42    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  1   |   101.58  |  23.46  |     4.48    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  2   |   101.66  |  22.02  |     4.72    |
+    +---------+------+-----------+---------+-------------+
+    |    1    |  3   |   101.48  |  22.22  |     4.52    |
+    +---------+------+-----------+---------+-------------+
+
+``CPU_VERSION`` in parallel
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. table:: ``CPU_VERSION`` latency (µs) in parallel on all cores
+
+    +-------------+--------+--------------+
+    |   Cluster   |  Core  |   Latency    |
+    +=============+========+==============+
+    |      0      |   0    |     1.22     |
+    +-------------+--------+--------------+
+    |      0      |   1    |     1.2      |
+    +-------------+--------+--------------+
+    |      1      |   0    |     0.6      |
+    +-------------+--------+--------------+
+    |      1      |   1    |     1.08     |
+    +-------------+--------+--------------+
+    |      1      |   2    |     1.04     |
+    +-------------+--------+--------------+
+    |      1      |   3    |     1.04     |
+    +-------------+--------+--------------+
+
+Annotated Historic Results
+--------------------------
+
+The following results are based on the upstream `TF master as of 31/01/2017`_.
+TF-A was built using the same build instructions as detailed in the procedure
+above.
 
 In the results below, CPUs 0-3 refer to CPUs in the little cluster (A53) and
 CPUs 4-5 refer to CPUs in the big cluster (A57). In all cases CPU 4 is the lead
 CPU.
 
-``PSCI_ENTRY`` refers to the time taken from entering the TF PSCI implementation
-to the point the hardware enters the low power state (WFI). Referring to the TF
-runtime instrumentation points, this corresponds to:
-``(RT_INSTR_ENTER_HW_LOW_PWR - RT_INSTR_ENTER_PSCI)``.
-
-``PSCI_EXIT`` refers to the time taken from the point the hardware exits the low
-power state to exiting the TF PSCI implementation. This corresponds to:
-``(RT_INSTR_EXIT_PSCI - RT_INSTR_EXIT_HW_LOW_PWR)``.
-
-``CFLUSH_OVERHEAD`` refers to the part of ``PSCI_ENTRY`` taken to flush the
-caches. This corresponds to: ``(RT_INSTR_EXIT_CFLUSH - RT_INSTR_ENTER_CFLUSH)``.
-
-Note there is very little variance observed in the values given (~1us), although
-the values for each CPU are sometimes interchanged, depending on the order in
-which locks are acquired. Also, there is very little variance observed between
-executing the tests sequentially in a single boot or rebooting between tests.
-
-Given that runtime instrumentation using PMF is invasive, there is a small
-(unquantified) overhead on the results. PMF uses the generic counter for
-timestamps, which runs at 50MHz on Juno.
-
-Results and Commentary
-----------------------
+``PSCI_ENTRY`` corresponds to the powerdown latency, ``PSCI_EXIT`` the wakeup latency, and
+``CFLUSH_OVERHEAD`` the latency of the cache flush operation.
 
 ``CPU_SUSPEND`` to deepest power level on all CPUs in parallel
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -290,3 +417,5 @@ effects, given that these measurements are at the nano-second level.
 
 .. _Juno R1 platform: https://developer.arm.com/documentation/100122/latest/
 .. _TF master as of 31/01/2017: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?id=c38b36d
+.. _v2.9-rc0: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?h=v2.9-rc0
+.. _Testing Methodology: ../perf/psci-performance-methodology.html