#include <asm/efi.h>
+static bool region_is_misaligned(const efi_memory_desc_t *md)
+{
+ if (PAGE_SIZE == EFI_PAGE_SIZE)
+ return false;
+ return !PAGE_ALIGNED(md->phys_addr) ||
+ !PAGE_ALIGNED(md->num_pages << EFI_PAGE_SHIFT);
+}
+
/*
* Only regions of type EFI_RUNTIME_SERVICES_CODE need to be
* executable, everything else can be mapped with the XN bits
if (type == EFI_MEMORY_MAPPED_IO)
return PROT_DEVICE_nGnRE;
- if (WARN_ONCE(!PAGE_ALIGNED(md->phys_addr),
- "UEFI Runtime regions are not aligned to 64 KB -- buggy firmware?"))
+ if (region_is_misaligned(md)) {
+ static bool __initdata code_is_misaligned;
+
/*
- * If the region is not aligned to the page size of the OS, we
- * can not use strict permissions, since that would also affect
- * the mapping attributes of the adjacent regions.
+ * Regions that are not aligned to the OS page size cannot be
+ * mapped with strict permissions, as those might interfere
+ * with the permissions that are needed by the adjacent
+ * region's mapping. However, if we haven't encountered any
+ * misaligned runtime code regions so far, we can safely use
+ * non-executable permissions for non-code regions.
*/
- return pgprot_val(PAGE_KERNEL_EXEC);
+ code_is_misaligned |= (type == EFI_RUNTIME_SERVICES_CODE);
+
+ return code_is_misaligned ? pgprot_val(PAGE_KERNEL_EXEC)
+ : pgprot_val(PAGE_KERNEL);
+ }
/* R-- */
if ((attr & (EFI_MEMORY_XP | EFI_MEMORY_RO)) ==
bool page_mappings_only = (md->type == EFI_RUNTIME_SERVICES_CODE ||
md->type == EFI_RUNTIME_SERVICES_DATA);
- if (!PAGE_ALIGNED(md->phys_addr) ||
- !PAGE_ALIGNED(md->num_pages << EFI_PAGE_SHIFT)) {
- /*
- * If the end address of this region is not aligned to page
- * size, the mapping is rounded up, and may end up sharing a
- * page frame with the next UEFI memory region. If we create
- * a block entry now, we may need to split it again when mapping
- * the next region, and support for that is going to be removed
- * from the MMU routines. So avoid block mappings altogether in
- * that case.
- */
+ /*
+ * If this region is not aligned to the page size used by the OS, the
+ * mapping will be rounded outwards, and may end up sharing a page
+ * frame with an adjacent runtime memory region. Given that the page
+ * table descriptor covering the shared page will be rewritten when the
+ * adjacent region gets mapped, we must avoid block mappings here so we
+ * don't have to worry about splitting them when that happens.
+ */
+ if (region_is_misaligned(md))
page_mappings_only = true;
- }
create_pgd_mapping(mm, md->phys_addr, md->virt_addr,
md->num_pages << EFI_PAGE_SHIFT,
BUG_ON(md->type != EFI_RUNTIME_SERVICES_CODE &&
md->type != EFI_RUNTIME_SERVICES_DATA);
+ if (region_is_misaligned(md))
+ return 0;
+
/*
* Calling apply_to_page_range() is only safe on regions that are
* guaranteed to be mapped down to pages. Since we are only called