return 0;
}
+/**
+ * ice_clear_vf_reset_trigger - enable VF to access hardware
+ * @vf: VF to enabled hardware access for
+ */
+static void ice_clear_vf_reset_trigger(struct ice_vf *vf)
+{
+ struct ice_hw *hw = &vf->pf->hw;
+ u32 reg;
+
+ reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
+ reg &= ~VPGEN_VFRTRIG_VFSWR_M;
+ wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
+ ice_flush(hw);
+}
+
/**
* ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset
* @vf: pointer to the VF structure
{
struct ice_pf *pf = vf->pf;
struct ice_hw *hw;
- u32 reg;
hw = &pf->hw;
- /* PF software completes the flow by notifying VF that reset flow is
- * completed. This is done by enabling hardware by clearing the reset
- * bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT
- * register to VFR completed (done at the end of this function)
- * By doing this we allow HW to access VF memory at any point. If we
- * did it any sooner, HW could access memory while it was being freed
- * in ice_free_vf_res(), causing an IOMMU fault.
+ /* Allow HW to access VF memory after calling
+ * ice_clear_vf_reset_trigger(). If we did it any sooner, HW could
+ * access memory while it was being freed in ice_free_vf_res(), causing
+ * an IOMMU fault.
*
* On the other hand, this needs to be done ASAP, because the VF driver
* is waiting for this to happen and may report a timeout. It's
* harmless, but it gets logged into Guest OS kernel log, so best avoid
* it.
*/
- reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
- reg &= ~VPGEN_VFRTRIG_VFSWR_M;
- wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
+ ice_clear_vf_reset_trigger(vf);
/* reallocate VF resources to finish resetting the VSI state */
if (!ice_alloc_vf_res(vf)) {