struct uhid_device {
struct mutex devlock;
+
+ /* This flag tracks whether the HID device is usable for commands from
+ * userspace. The flag is already set before hid_add_device(), which
+ * runs in workqueue context, to allow hid_add_device() to communicate
+ * with userspace.
+ * However, if hid_add_device() fails, the flag is cleared without
+ * holding devlock.
+ * We guarantee that if @running changes from true to false while you're
+ * holding @devlock, it's still fine to access @hid.
+ */
bool running;
__u8 *rd_data;
uint rd_size;
+ /* When this is NULL, userspace may use UHID_CREATE/UHID_CREATE2. */
struct hid_device *hid;
struct uhid_event input_buf;
if (ret) {
hid_err(uhid->hid, "Cannot register HID device: error %d\n", ret);
- hid_destroy_device(uhid->hid);
- uhid->hid = NULL;
+ /* We used to call hid_destroy_device() here, but that's really
+ * messy to get right because we have to coordinate with
+ * concurrent writes from userspace that might be in the middle
+ * of using uhid->hid.
+ * Just leave uhid->hid as-is for now, and clean it up when
+ * userspace tries to close or reinitialize the uhid instance.
+ *
+ * However, we do have to clear the ->running flag and do a
+ * wakeup to make sure userspace knows that the device is gone.
+ */
uhid->running = false;
+ wake_up_interruptible(&uhid->report_wait);
}
}
void *rd_data;
int ret;
- if (uhid->running)
+ if (uhid->hid)
return -EALREADY;
rd_size = ev->u.create2.rd_size;
static int uhid_dev_destroy(struct uhid_device *uhid)
{
- if (!uhid->running)
+ if (!uhid->hid)
return -EINVAL;
uhid->running = false;
cancel_work_sync(&uhid->worker);
hid_destroy_device(uhid->hid);
+ uhid->hid = NULL;
kfree(uhid->rd_data);
return 0;