*
* The first message goes into mb nr. 1 and issues an interrupt. All
* rx ints are disabled in the interrupt handler and a napi poll is
- * scheduled. We read the mailbox, but do _not_ reenable the mb (to
+ * scheduled. We read the mailbox, but do _not_ re-enable the mb (to
* receive another message).
*
* lower mbxs upper
*
* The variable priv->rx_next points to the next mailbox to read a
* message from. As long we're in the lower mailboxes we just read the
- * mailbox but not reenable it.
+ * mailbox but not re-enable it.
*
- * With completion of the last of the lower mailboxes, we reenable the
+ * With completion of the last of the lower mailboxes, we re-enable the
* whole first group, but continue to look for filled mailboxes in the
* upper mailboxes. Imagine the second group like overflow mailboxes,
* which takes CAN messages if the lower goup is full. While in the
- * upper group we reenable the mailbox right after reading it. Giving
+ * upper group we re-enable the mailbox right after reading it. Giving
* the chip more room to store messages.
*
* After finishing we look again in the lower group if we've still
priv->can.can_stats.error_warning++;
}
} else {
- /* Back to error avtive */
+ /* Back to error active */
cf->can_id |= CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_ACTIVE;
priv->can.state = CAN_STATE_ERROR_ACTIVE;
u8 control_normal_mode; /* Control register for normal mode */
u8 cpu_interface; /* CPU interface register */
u8 clkout; /* Clock out register */
- u8 bus_config; /* Bus conffiguration register */
+ u8 bus_config; /* Bus configuration register */
struct sk_buff *tx_skb;
};
int rx_budget = budget / 2;
int tx_budget = budget - rx_budget;
- /* Half of the budget for receiveing messages */
+ /* Half of the budget for receiving messages */
rx_work_done = grcan_receive(dev, rx_budget);
/* Half of the budget for transmitting messages as that can trigger echo
tristate "TCAN4X5X M_CAN device"
help
Say Y here if you want support for Texas Instruments TCAN4x5x
- M_CAN controller. This device is a peripherial device that uses the
+ M_CAN controller. This device is a peripheral device that uses the
SPI bus for communication.
PCH_ID2_DIR | (0x7ff << 2));
iowrite32(0x0, &priv->regs->ifregs[1].id1);
- /* Claring NewDat, TxRqst & IntPnd */
+ /* Clearing NewDat, TxRqst & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
PCH_IF_MCONT_TXRQXT);
struct pch_can_priv *priv = netdev_priv(ndev);
int retval;
- /* Regstering the interrupt. */
+ /* Registering the interrupt. */
retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
ndev->name, ndev);
if (retval) {
/* GPIOICR byte access offsets */
#define PITA_GPOUT 0x18 /* GPx output value */
#define PITA_GPIN 0x19 /* GPx input value */
-#define PITA_GPOEN 0x1A /* configure GPx as ouput pin */
+#define PITA_GPOEN 0x1A /* configure GPx as output pin */
/* I2C GP bits */
#define PITA_GPIN_SCL 0x01 /* Serial Clock Line */
card->fw_major = pcan_read_reg(card, PCC_FW_MAJOR);
card->fw_minor = pcan_read_reg(card, PCC_FW_MINOR);
- /* display board name and firware version */
+ /* display board name and firmware version */
dev_info(&pdev->dev, "PEAK-System pcmcia card %s fw %d.%d\n",
pdev->prod_id[1] ? pdev->prod_id[1] : "PCAN-PC Card",
card->fw_major, card->fw_minor);
help
Support for CAN cards from Softing Gmbh & some cards
from Vector Gmbh.
- Softing Gmbh CAN cards come with 1 or 2 physical busses.
+ Softing Gmbh CAN cards come with 1 or 2 physical buses.
Those cards typically use Dual Port RAM to communicate
with the host CPU. The interface is then identical for PCI
and PCMCIA cards. This driver operates on a platform device,
which has been created by softing_cs or softing_pci driver.
Warning:
The API of the card does not allow fine control per bus, but
- controls the 2 busses on the card together.
+ controls the 2 buses on the card together.
As such, some actions (start/stop/busoff recovery) on 1 bus
must bring down the other bus too temporarily.
goto failed;
}
- /* regualar data */
+ /* regular data */
for (sum = 0, j = 0; j < len; ++j)
sum += dat[j];
/* work in 16bit (target) */
if (ret)
goto failed;
if (!bus_bitmask_start)
- /* no busses to be brought up */
+ /* no buses to be brought up */
goto card_done;
if ((bus_bitmask_start & 1) && (bus_bitmask_start & 2)
&& (softing_error_reporting(card->net[0])
!= softing_error_reporting(card->net[1]))) {
dev_alert(&card->pdev->dev,
- "err_reporting flag differs for busses\n");
+ "err_reporting flag differs for buses\n");
goto invalid;
}
error_reporting = 0;
priv->can.state = CAN_STATE_ERROR_ACTIVE;
open_candev(netdev);
if (dev != netdev) {
- /* notify other busses on the restart */
+ /* notify other buses on the restart */
softing_netdev_rx(netdev, &msg, 0);
++priv->can.can_stats.restarts;
}
msg.can_dlc = CAN_ERR_DLC;
msg.data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
/*
- * service to all busses, we don't know which it was applicable
- * but only service busses that are online
+ * service to all buses, we don't know which it was applicable
+ * but only service buses that are online
*/
for (j = 0; j < ARRAY_SIZE(card->net); ++j) {
netdev = card->net[j];
continue;
priv = netdev_priv(netdev);
if (!canif_is_active(netdev))
- /* it makes no sense to wake dead busses */
+ /* it makes no sense to wake dead buses */
continue;
if (priv->tx.pending >= TX_ECHO_SKB_MAX)
continue;
}
/*
- * netdev/candev inter-operability
+ * netdev/candev interoperability
*/
static int softing_netdev_open(struct net_device *ndev)
{
* 16bit, shared interrupt
*/
int generation;
- int nbus; /* # busses on device */
+ int nbus; /* # buses on device */
unsigned int freq; /* operating frequency in Hz */
unsigned int max_brp;
unsigned int max_sjw;
/* ti_hecc_xmit: HECC Transmit
*
* The transmit mailboxes start from 0 to HECC_MAX_TX_MBOX. In HECC the
- * priority of the mailbox for tranmission is dependent upon priority setting
+ * priority of the mailbox for transmission is dependent upon priority setting
* field in mailbox registers. The mailbox with highest value in priority field
* is transmitted first. Only when two mailboxes have the same value in
* priority field the highest numbered mailbox is transmitted first.
tristate "PEAK PCAN-USB/USB Pro interfaces for CAN 2.0b/CAN-FD"
help
This driver supports the PEAK-System Technik USB adapters that enable
- access to the CAN bus, with repect to the CAN 2.0b and/or CAN-FD
+ access to the CAN bus, with respect to the CAN 2.0b and/or CAN-FD
standards, that is:
PCAN-USB single CAN 2.0b channel USB adapter
netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
- /* dev settup */
+ /* dev setup */
strcpy(dev->bt_const.name, "gs_usb");
dev->bt_const.tseg1_min = bt_const->tseg1_min;
dev->bt_const.tseg1_max = bt_const->tseg1_max;
dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
}
- /* can settup */
+ /* can setup */
dev->can.state = CAN_STATE_STOPPED;
dev->can.clock.freq = bt_const->fclk_can;
dev->can.bittiming_const = &dev->bt_const;
#define MCBA_CTX_FREE MCBA_MAX_TX_URBS
/* RX buffer must be bigger than msg size since at the
- * beggining USB messages are stacked.
+ * beginning USB messages are stacked.
*/
#define MCBA_USB_RX_BUFF_SIZE 64
#define MCBA_USB_TX_BUFF_SIZE (sizeof(struct mcba_usb_msg))
#define PCAN_UFD_RX_BUFFER_SIZE 2048
#define PCAN_UFD_TX_BUFFER_SIZE 512
-/* read some versions info from the hw devcie */
+/* read some versions info from the hw device */
struct __packed pcan_ufd_fw_info {
__le16 size_of; /* sizeof this */
__le16 type; /* type of this structure */
return err;
}
-/* socket callback used to copy berr counters values receieved through USB */
+/* socket callback used to copy berr counters values received through USB */
static int pcan_usb_fd_get_berr_counter(const struct net_device *netdev,
struct can_berr_counter *bec)
{
struct usb_endpoint_descriptor *ep = &if_desc->endpoint[i].desc;
/*
- * below is the list of valid ep addreses. Any other ep address
+ * below is the list of valid ep addresses. Any other ep address
* is considered as not-CAN interface address => no dev created
*/
switch (ep->bEndpointAddress) {
/* request the device information and store it in ctl_msg_buffer
*
- * note: ucan_ctrl_command_* wrappers connot be used yet
+ * note: ucan_ctrl_command_* wrappers cannot be used yet
* because `up` is initialised in Stage 3
*/
ret = usb_control_msg(udev,
up = netdev_priv(netdev);
- /* initialze data */
+ /* initialize data */
up->udev = udev;
up->intf = intf;
up->netdev = netdev;
/* status */
#define USB_8DEV_STATUSMSG_OK 0x00 /* Normal condition. */
-#define USB_8DEV_STATUSMSG_OVERRUN 0x01 /* Overrun occured when sending */
+#define USB_8DEV_STATUSMSG_OVERRUN 0x01 /* Overrun occurred when sending */
#define USB_8DEV_STATUSMSG_BUSLIGHT 0x02 /* Error counter has reached 96 */
#define USB_8DEV_STATUSMSG_BUSHEAVY 0x03 /* Error count. has reached 128 */
#define USB_8DEV_STATUSMSG_BUSOFF 0x04 /* Device is in BUSOFF */
/* command frame */
struct __packed usb_8dev_cmd_msg {
u8 begin;
- u8 channel; /* unkown - always 0 */
+ u8 channel; /* unknown - always 0 */
u8 command; /* command to execute */
u8 opt1; /* optional parameter / return value */
u8 opt2; /* optional parameter 2 */
/**
* xcan_interrupt - CAN Isr
* @irq: irq number
- * @dev_id: device id poniter
+ * @dev_id: device id pointer
*
* This is the xilinx CAN Isr. It checks for the type of interrupt
* and invokes the corresponding ISR.