return delta;
}
+/**
+ * fixed_power_int - compute: x^n, in O(log n) time
+ *
+ * @x: base of the power
+ * @frac_bits: fractional bits of @x
+ * @n: power to raise @x to.
+ *
+ * By exploiting the relation between the definition of the natural power
+ * function: x^n := x*x*...*x (x multiplied by itself for n times), and
+ * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
+ * (where: n_i \elem {0, 1}, the binary vector representing n),
+ * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
+ * of course trivially computable in O(log_2 n), the length of our binary
+ * vector.
+ */
+static unsigned long
+fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
+{
+ unsigned long result = 1UL << frac_bits;
+
+ if (n) {
+ for (;;) {
+ if (n & 1) {
+ result *= x;
+ result += 1UL << (frac_bits - 1);
+ result >>= frac_bits;
+ }
+ n >>= 1;
+ if (!n)
+ break;
+ x *= x;
+ x += 1UL << (frac_bits - 1);
+ x >>= frac_bits;
+ }
+ }
+
+ return result;
+}
+
+/*
+ * a1 = a0 * e + a * (1 - e)
+ *
+ * a2 = a1 * e + a * (1 - e)
+ * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
+ * = a0 * e^2 + a * (1 - e) * (1 + e)
+ *
+ * a3 = a2 * e + a * (1 - e)
+ * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
+ * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
+ *
+ * ...
+ *
+ * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
+ * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
+ * = a0 * e^n + a * (1 - e^n)
+ *
+ * [1] application of the geometric series:
+ *
+ * n 1 - x^(n+1)
+ * S_n := \Sum x^i = -------------
+ * i=0 1 - x
+ */
+unsigned long
+calc_load_n(unsigned long load, unsigned long exp,
+ unsigned long active, unsigned int n)
+{
+ return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
+}
+
#ifdef CONFIG_NO_HZ_COMMON
/*
* Handle NO_HZ for the global load-average.
return delta;
}
-/**
- * fixed_power_int - compute: x^n, in O(log n) time
- *
- * @x: base of the power
- * @frac_bits: fractional bits of @x
- * @n: power to raise @x to.
- *
- * By exploiting the relation between the definition of the natural power
- * function: x^n := x*x*...*x (x multiplied by itself for n times), and
- * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
- * (where: n_i \elem {0, 1}, the binary vector representing n),
- * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
- * of course trivially computable in O(log_2 n), the length of our binary
- * vector.
- */
-static unsigned long
-fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
-{
- unsigned long result = 1UL << frac_bits;
-
- if (n) {
- for (;;) {
- if (n & 1) {
- result *= x;
- result += 1UL << (frac_bits - 1);
- result >>= frac_bits;
- }
- n >>= 1;
- if (!n)
- break;
- x *= x;
- x += 1UL << (frac_bits - 1);
- x >>= frac_bits;
- }
- }
-
- return result;
-}
-
-/*
- * a1 = a0 * e + a * (1 - e)
- *
- * a2 = a1 * e + a * (1 - e)
- * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
- * = a0 * e^2 + a * (1 - e) * (1 + e)
- *
- * a3 = a2 * e + a * (1 - e)
- * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
- * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
- *
- * ...
- *
- * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
- * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
- * = a0 * e^n + a * (1 - e^n)
- *
- * [1] application of the geometric series:
- *
- * n 1 - x^(n+1)
- * S_n := \Sum x^i = -------------
- * i=0 1 - x
- */
-static unsigned long
-calc_load_n(unsigned long load, unsigned long exp,
- unsigned long active, unsigned int n)
-{
- return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
-}
-
/*
* NO_HZ can leave us missing all per-CPU ticks calling
* calc_load_fold_active(), but since a NO_HZ CPU folds its delta into