if (err)
continue;
- /* Check if the timestamp is valid */
- if (!(raw_tstamp & ICE_PTP_TS_VALID))
+ /* Check if the timestamp is invalid or stale */
+ if (!(raw_tstamp & ICE_PTP_TS_VALID) ||
+ raw_tstamp == tx->tstamps[idx].cached_tstamp)
continue;
- /* clear the timestamp register, so that it won't show valid
- * again when re-used.
- */
- ice_clear_phy_tstamp(hw, tx->quad, phy_idx);
-
/* The timestamp is valid, so we'll go ahead and clear this
* index and then send the timestamp up to the stack.
*/
spin_lock(&tx->lock);
+ tx->tstamps[idx].cached_tstamp = raw_tstamp;
clear_bit(idx, tx->in_use);
skb = tx->tstamps[idx].skb;
tx->tstamps[idx].skb = NULL;
* struct ice_tx_tstamp - Tracking for a single Tx timestamp
* @skb: pointer to the SKB for this timestamp request
* @start: jiffies when the timestamp was first requested
+ * @cached_tstamp: last read timestamp
*
* This structure tracks a single timestamp request. The SKB pointer is
* provided when initiating a request. The start time is used to ensure that
* we discard old requests that were not fulfilled within a 2 second time
* window.
+ * Timestamp values in the PHY are read only and do not get cleared except at
+ * hardware reset or when a new timestamp value is captured. The cached_tstamp
+ * field is used to detect the case where a new timestamp has not yet been
+ * captured, ensuring that we avoid sending stale timestamp data to the stack.
*/
struct ice_tx_tstamp {
struct sk_buff *skb;
unsigned long start;
+ u64 cached_tstamp;
};
/**