struct page *newpage, struct page *page);
extern int migrate_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page, int extra_count);
+extern void copy_huge_page(struct page *dst, struct page *src);
#else
static inline void putback_movable_pages(struct list_head *l) {}
return -ENOSYS;
}
+static inline void copy_huge_page(struct page *dst, struct page *src)
+{
+}
#endif /* CONFIG_MIGRATION */
#ifdef CONFIG_COMPACTION
#include <linux/numa.h>
#include <linux/llist.h>
#include <linux/cma.h>
+#include <linux/migrate.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
struct page **pagep)
{
bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
- struct address_space *mapping;
- pgoff_t idx;
+ struct hstate *h = hstate_vma(dst_vma);
+ struct address_space *mapping = dst_vma->vm_file->f_mapping;
+ pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
unsigned long size;
int vm_shared = dst_vma->vm_flags & VM_SHARED;
- struct hstate *h = hstate_vma(dst_vma);
pte_t _dst_pte;
spinlock_t *ptl;
- int ret;
+ int ret = -ENOMEM;
struct page *page;
int writable;
- mapping = dst_vma->vm_file->f_mapping;
- idx = vma_hugecache_offset(h, dst_vma, dst_addr);
-
if (is_continue) {
ret = -EFAULT;
page = find_lock_page(mapping, idx);
/* fallback to copy_from_user outside mmap_lock */
if (unlikely(ret)) {
ret = -ENOENT;
+ /* Free the allocated page which may have
+ * consumed a reservation.
+ */
+ restore_reserve_on_error(h, dst_vma, dst_addr, page);
+ put_page(page);
+
+ /* Allocate a temporary page to hold the copied
+ * contents.
+ */
+ page = alloc_huge_page_vma(h, dst_vma, dst_addr);
+ if (!page) {
+ ret = -ENOMEM;
+ goto out;
+ }
*pagep = page;
- /* don't free the page */
+ /* Set the outparam pagep and return to the caller to
+ * copy the contents outside the lock. Don't free the
+ * page.
+ */
goto out;
}
} else {
- page = *pagep;
+ if (vm_shared &&
+ hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
+ put_page(*pagep);
+ ret = -EEXIST;
+ *pagep = NULL;
+ goto out;
+ }
+
+ page = alloc_huge_page(dst_vma, dst_addr, 0);
+ if (IS_ERR(page)) {
+ ret = -ENOMEM;
+ *pagep = NULL;
+ goto out;
+ }
+ copy_huge_page(page, *pagep);
+ put_page(*pagep);
*pagep = NULL;
}
unsigned long len,
enum mcopy_atomic_mode mode)
{
- int vm_alloc_shared = dst_vma->vm_flags & VM_SHARED;
int vm_shared = dst_vma->vm_flags & VM_SHARED;
ssize_t err;
pte_t *dst_pte;
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
- vm_alloc_shared = vm_shared;
cond_resched();
out_unlock:
mmap_read_unlock(dst_mm);
out:
- if (page) {
- /*
- * We encountered an error and are about to free a newly
- * allocated huge page.
- *
- * Reservation handling is very subtle, and is different for
- * private and shared mappings. See the routine
- * restore_reserve_on_error for details. Unfortunately, we
- * can not call restore_reserve_on_error now as it would
- * require holding mmap_lock.
- *
- * If a reservation for the page existed in the reservation
- * map of a private mapping, the map was modified to indicate
- * the reservation was consumed when the page was allocated.
- * We clear the HPageRestoreReserve flag now so that the global
- * reserve count will not be incremented in free_huge_page.
- * The reservation map will still indicate the reservation
- * was consumed and possibly prevent later page allocation.
- * This is better than leaking a global reservation. If no
- * reservation existed, it is still safe to clear
- * HPageRestoreReserve as no adjustments to reservation counts
- * were made during allocation.
- *
- * The reservation map for shared mappings indicates which
- * pages have reservations. When a huge page is allocated
- * for an address with a reservation, no change is made to
- * the reserve map. In this case HPageRestoreReserve will be
- * set to indicate that the global reservation count should be
- * incremented when the page is freed. This is the desired
- * behavior. However, when a huge page is allocated for an
- * address without a reservation a reservation entry is added
- * to the reservation map, and HPageRestoreReserve will not be
- * set. When the page is freed, the global reserve count will
- * NOT be incremented and it will appear as though we have
- * leaked reserved page. In this case, set HPageRestoreReserve
- * so that the global reserve count will be incremented to
- * match the reservation map entry which was created.
- *
- * Note that vm_alloc_shared is based on the flags of the vma
- * for which the page was originally allocated. dst_vma could
- * be different or NULL on error.
- */
- if (vm_alloc_shared)
- SetHPageRestoreReserve(page);
- else
- ClearHPageRestoreReserve(page);
+ if (page)
put_page(page);
- }
BUG_ON(copied < 0);
BUG_ON(err > 0);
BUG_ON(!copied && !err);