return ret;
for (i = 0; i < hyp_nr_cpus; i++) {
+ struct kvm_nvhe_init_params *params = per_cpu_ptr(&kvm_init_params, i);
+ unsigned long hyp_addr;
+
start = (void *)kern_hyp_va(per_cpu_base[i]);
end = start + PAGE_ALIGN(hyp_percpu_size);
ret = pkvm_create_mappings(start, end, PAGE_HYP);
if (ret)
return ret;
- end = (void *)per_cpu_ptr(&kvm_init_params, i)->stack_hyp_va;
- start = end - PAGE_SIZE;
- ret = pkvm_create_mappings(start, end, PAGE_HYP);
+ /*
+ * Allocate a contiguous HYP private VA range for the stack
+ * and guard page. The allocation is also aligned based on
+ * the order of its size.
+ */
+ ret = pkvm_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
+ if (ret)
+ return ret;
+
+ /*
+ * Since the stack grows downwards, map the stack to the page
+ * at the higher address and leave the lower guard page
+ * unbacked.
+ *
+ * Any valid stack address now has the PAGE_SHIFT bit as 1
+ * and addresses corresponding to the guard page have the
+ * PAGE_SHIFT bit as 0 - this is used for overflow detection.
+ */
+ hyp_spin_lock(&pkvm_pgd_lock);
+ ret = kvm_pgtable_hyp_map(&pkvm_pgtable, hyp_addr + PAGE_SIZE,
+ PAGE_SIZE, params->stack_pa, PAGE_HYP);
+ hyp_spin_unlock(&pkvm_pgd_lock);
if (ret)
return ret;
+
+ /* Update stack_hyp_va to end of the stack's private VA range */
+ params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
}
/*