kexec can leave MMU registers set when booting into a new kernel,
the PIDR (Process Identification Register) in particular. The boot
sequence does not zero PIDR, so it only gets set when CPUs first
switch to a userspace processes (until then it's running a kernel
thread with effective PID = 0).
This leaves a window where a process table entry and page tables are
set up due to user processes running on other CPUs, that happen to
match with a stale PID. The CPU with that PID may cause speculative
accesses that address quadrant 0 (aka userspace addresses), which will
result in cached translations and PWC (Page Walk Cache) for that
process, on a CPU which is not in the mm_cpumask and so they will not
be invalidated properly.
The most common result is the kernel hanging in infinite page fault
loops soon after kexec (usually in schedule_tail, which is usually the
first non-speculative quadrant 0 access to a new PID) due to a stale
PWC. However being a stale translation error, it could result in
anything up to security and data corruption problems.
Fix this by zeroing out PIDR at boot and kexec.
Fixes: e32967016d38 ("powerpc/mm/radix: Add mmu context handling callback for radix")
Cc: stable@vger.kernel.org # v4.7+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
li r0,0
mtspr SPRN_PSSCR,r0
mtspr SPRN_LPID,r0
+ mtspr SPRN_PID,r0
mfspr r3,SPRN_LPCR
LOAD_REG_IMMEDIATE(r4, LPCR_PECEDH | LPCR_PECE_HVEE | LPCR_HVICE | LPCR_HEIC)
or r3, r3, r4
li r0,0
mtspr SPRN_PSSCR,r0
mtspr SPRN_LPID,r0
+ mtspr SPRN_PID,r0
mfspr r3,SPRN_LPCR
LOAD_REG_IMMEDIATE(r4, LPCR_PECEDH | LPCR_PECE_HVEE | LPCR_HVICE | LPCR_HEIC)
or r3, r3, r4