S: Maintained
F: doc/device-tree-bindings/mfd/kendryte,k210-sysctl.txt
F: doc/device-tree-bindings/pinctrl/kendryte,k210-fpioa.txt
-F: drivers/clk/kendryte/
-F: drivers/pinctrl/kendryte/
+F: drivers/clk/clk_kendryte.c
+F: drivers/pinctrl/pinctrl-kendryte.c
F: include/kendryte/
RNG
by a SCMI agent based on SCMI clock protocol communication
with a SCMI server.
+config CLK_K210
+ bool "Clock support for Kendryte K210"
+ depends on CLK
+ help
+ This enables support clock driver for Kendryte K210 platforms.
+
+config CLK_K210_SET_RATE
+ bool "Enable setting the Kendryte K210 PLL rate"
+ depends on CLK_K210
+ help
+ Add functionality to calculate new rates for K210 PLLs. Enabling this
+ feature adds around 1K to U-Boot's final size.
+
source "drivers/clk/analogbits/Kconfig"
source "drivers/clk/at91/Kconfig"
source "drivers/clk/exynos/Kconfig"
source "drivers/clk/imx/Kconfig"
-source "drivers/clk/kendryte/Kconfig"
source "drivers/clk/meson/Kconfig"
source "drivers/clk/microchip/Kconfig"
source "drivers/clk/mvebu/Kconfig"
obj-$(CONFIG_CLK_EXYNOS) += exynos/
obj-$(CONFIG_$(SPL_TPL_)CLK_INTEL) += intel/
obj-$(CONFIG_CLK_HSDK) += clk-hsdk-cgu.o
-obj-$(CONFIG_CLK_K210) += kendryte/
+obj-$(CONFIG_CLK_K210) += clk_kendryte.o
obj-$(CONFIG_CLK_MPC83XX) += mpc83xx_clk.o
obj-$(CONFIG_CLK_MPFS) += microchip/
obj-$(CONFIG_CLK_OCTEON) += clk_octeon.o
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
+ */
+#define LOG_CATEGORY UCLASS_CLK
+
+#include <common.h>
+#include <clk.h>
+#include <clk-uclass.h>
+#include <div64.h>
+#include <dm.h>
+#include <log.h>
+#include <mapmem.h>
+#include <serial.h>
+#include <dt-bindings/clock/k210-sysctl.h>
+#include <dt-bindings/mfd/k210-sysctl.h>
+#include <kendryte/pll.h>
+#include <linux/bitfield.h>
+
+DECLARE_GLOBAL_DATA_PTR;
+
+/**
+ * struct k210_clk_priv - K210 clock driver private data
+ * @base: The base address of the sysctl device
+ * @in0: The "in0" external oscillator
+ */
+struct k210_clk_priv {
+ void __iomem *base;
+ struct clk in0;
+};
+
+/*
+ * All parameters for different sub-clocks are collected into parameter arrays.
+ * These parameters are then initialized by the clock which uses them during
+ * probe. To save space, ids are automatically generated for each sub-clock by
+ * using an enum. Instead of storing a parameter struct for each clock, even for
+ * those clocks which don't use a particular type of sub-clock, we can just
+ * store the parameters for the clocks which need them.
+ *
+ * So why do it like this? Arranging all the sub-clocks together makes it very
+ * easy to find bugs in the code.
+ */
+
+/**
+ * enum k210_clk_div_type - The type of divider
+ * @K210_DIV_ONE: freq = parent / (reg + 1)
+ * @K210_DIV_EVEN: freq = parent / 2 / (reg + 1)
+ * @K210_DIV_POWER: freq = parent / (2 << reg)
+ * @K210_DIV_FIXED: freq = parent / factor
+ */
+enum k210_clk_div_type {
+ K210_DIV_ONE,
+ K210_DIV_EVEN,
+ K210_DIV_POWER,
+ K210_DIV_FIXED,
+};
+
+/**
+ * struct k210_div_params - Parameters for dividing clocks
+ * @type: An &enum k210_clk_div_type specifying the dividing formula
+ * @off: The offset of the divider from the sysctl base address
+ * @shift: The offset of the LSB of the divider
+ * @width: The number of bits in the divider
+ * @div: The fixed divisor for this divider
+ */
+struct k210_div_params {
+ u8 type;
+ union {
+ struct {
+ u8 off;
+ u8 shift;
+ u8 width;
+ };
+ u8 div;
+ };
+};
+
+#define DIV_LIST \
+ DIV(K210_CLK_ACLK, K210_SYSCTL_SEL0, 1, 2, K210_DIV_POWER) \
+ DIV(K210_CLK_APB0, K210_SYSCTL_SEL0, 3, 3, K210_DIV_ONE) \
+ DIV(K210_CLK_APB1, K210_SYSCTL_SEL0, 6, 3, K210_DIV_ONE) \
+ DIV(K210_CLK_APB2, K210_SYSCTL_SEL0, 9, 3, K210_DIV_ONE) \
+ DIV(K210_CLK_SRAM0, K210_SYSCTL_THR0, 0, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_SRAM1, K210_SYSCTL_THR0, 4, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_AI, K210_SYSCTL_THR0, 8, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_DVP, K210_SYSCTL_THR0, 12, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_ROM, K210_SYSCTL_THR0, 16, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_SPI0, K210_SYSCTL_THR1, 0, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_SPI1, K210_SYSCTL_THR1, 8, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_SPI2, K210_SYSCTL_THR1, 16, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_SPI3, K210_SYSCTL_THR1, 24, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_TIMER0, K210_SYSCTL_THR2, 0, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_TIMER1, K210_SYSCTL_THR2, 8, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_TIMER2, K210_SYSCTL_THR2, 16, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S0, K210_SYSCTL_THR3, 0, 16, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S1, K210_SYSCTL_THR3, 16, 16, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S2, K210_SYSCTL_THR4, 0, 16, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S0_M, K210_SYSCTL_THR4, 16, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S1_M, K210_SYSCTL_THR4, 24, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S2_M, K210_SYSCTL_THR4, 0, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2C0, K210_SYSCTL_THR5, 8, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2C1, K210_SYSCTL_THR5, 16, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2C2, K210_SYSCTL_THR5, 24, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_WDT0, K210_SYSCTL_THR6, 0, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_WDT1, K210_SYSCTL_THR6, 8, 8, K210_DIV_EVEN) \
+ DIV_FIXED(K210_CLK_CLINT, 50) \
+
+#define _DIVIFY(id) K210_CLK_DIV_##id
+#define DIVIFY(id) _DIVIFY(id)
+
+enum k210_div_id {
+#define DIV(id, ...) DIVIFY(id),
+#define DIV_FIXED DIV
+ DIV_LIST
+#undef DIV
+#undef DIV_FIXED
+ K210_CLK_DIV_NONE,
+};
+
+static const struct k210_div_params k210_divs[] = {
+#define DIV(id, _off, _shift, _width, _type) \
+ [DIVIFY(id)] = { \
+ .type = (_type), \
+ .off = (_off), \
+ .shift = (_shift), \
+ .width = (_width), \
+ },
+#define DIV_FIXED(id, _div) \
+ [DIVIFY(id)] = { \
+ .type = K210_DIV_FIXED, \
+ .div = (_div) \
+ },
+ DIV_LIST
+#undef DIV
+#undef DIV_FIXED
+};
+
+#undef DIV
+#undef DIV_LIST
+
+/**
+ * struct k210_gate_params - Parameters for gated clocks
+ * @off: The offset of the gate from the sysctl base address
+ * @bit_idx: The index of the bit within the register
+ */
+struct k210_gate_params {
+ u8 off;
+ u8 bit_idx;
+};
+
+#define GATE_LIST \
+ GATE(K210_CLK_CPU, K210_SYSCTL_EN_CENT, 0) \
+ GATE(K210_CLK_SRAM0, K210_SYSCTL_EN_CENT, 1) \
+ GATE(K210_CLK_SRAM1, K210_SYSCTL_EN_CENT, 2) \
+ GATE(K210_CLK_APB0, K210_SYSCTL_EN_CENT, 3) \
+ GATE(K210_CLK_APB1, K210_SYSCTL_EN_CENT, 4) \
+ GATE(K210_CLK_APB2, K210_SYSCTL_EN_CENT, 5) \
+ GATE(K210_CLK_ROM, K210_SYSCTL_EN_PERI, 0) \
+ GATE(K210_CLK_DMA, K210_SYSCTL_EN_PERI, 1) \
+ GATE(K210_CLK_AI, K210_SYSCTL_EN_PERI, 2) \
+ GATE(K210_CLK_DVP, K210_SYSCTL_EN_PERI, 3) \
+ GATE(K210_CLK_FFT, K210_SYSCTL_EN_PERI, 4) \
+ GATE(K210_CLK_GPIO, K210_SYSCTL_EN_PERI, 5) \
+ GATE(K210_CLK_SPI0, K210_SYSCTL_EN_PERI, 6) \
+ GATE(K210_CLK_SPI1, K210_SYSCTL_EN_PERI, 7) \
+ GATE(K210_CLK_SPI2, K210_SYSCTL_EN_PERI, 8) \
+ GATE(K210_CLK_SPI3, K210_SYSCTL_EN_PERI, 9) \
+ GATE(K210_CLK_I2S0, K210_SYSCTL_EN_PERI, 10) \
+ GATE(K210_CLK_I2S1, K210_SYSCTL_EN_PERI, 11) \
+ GATE(K210_CLK_I2S2, K210_SYSCTL_EN_PERI, 12) \
+ GATE(K210_CLK_I2C0, K210_SYSCTL_EN_PERI, 13) \
+ GATE(K210_CLK_I2C1, K210_SYSCTL_EN_PERI, 14) \
+ GATE(K210_CLK_I2C2, K210_SYSCTL_EN_PERI, 15) \
+ GATE(K210_CLK_UART1, K210_SYSCTL_EN_PERI, 16) \
+ GATE(K210_CLK_UART2, K210_SYSCTL_EN_PERI, 17) \
+ GATE(K210_CLK_UART3, K210_SYSCTL_EN_PERI, 18) \
+ GATE(K210_CLK_AES, K210_SYSCTL_EN_PERI, 19) \
+ GATE(K210_CLK_FPIOA, K210_SYSCTL_EN_PERI, 20) \
+ GATE(K210_CLK_TIMER0, K210_SYSCTL_EN_PERI, 21) \
+ GATE(K210_CLK_TIMER1, K210_SYSCTL_EN_PERI, 22) \
+ GATE(K210_CLK_TIMER2, K210_SYSCTL_EN_PERI, 23) \
+ GATE(K210_CLK_WDT0, K210_SYSCTL_EN_PERI, 24) \
+ GATE(K210_CLK_WDT1, K210_SYSCTL_EN_PERI, 25) \
+ GATE(K210_CLK_SHA, K210_SYSCTL_EN_PERI, 26) \
+ GATE(K210_CLK_OTP, K210_SYSCTL_EN_PERI, 27) \
+ GATE(K210_CLK_RTC, K210_SYSCTL_EN_PERI, 29)
+
+#define _GATEIFY(id) K210_CLK_GATE_##id
+#define GATEIFY(id) _GATEIFY(id)
+
+enum k210_gate_id {
+#define GATE(id, ...) GATEIFY(id),
+ GATE_LIST
+#undef GATE
+ K210_CLK_GATE_NONE,
+};
+
+static const struct k210_gate_params k210_gates[] = {
+#define GATE(id, _off, _idx) \
+ [GATEIFY(id)] = { \
+ .off = (_off), \
+ .bit_idx = (_idx), \
+ },
+ GATE_LIST
+#undef GATE
+};
+
+#undef GATE_LIST
+
+/* The most parents is PLL2 */
+#define K210_CLK_MAX_PARENTS 3
+
+/**
+ * struct k210_mux_params - Parameters for muxed clocks
+ * @parents: A list of parent clock ids
+ * @num_parents: The number of parent clocks
+ * @off: The offset of the mux from the base sysctl address
+ * @shift: The offset of the LSB of the mux selector
+ * @width: The number of bits in the mux selector
+ */
+struct k210_mux_params {
+ u8 parents[K210_CLK_MAX_PARENTS];
+ u8 num_parents;
+ u8 off;
+ u8 shift;
+ u8 width;
+};
+
+#define MUX(id, reg, shift, width) \
+ MUX_PARENTS(id, reg, shift, width, K210_CLK_IN0, K210_CLK_PLL0)
+#define MUX_LIST \
+ MUX_PARENTS(K210_CLK_PLL2, K210_SYSCTL_PLL2, 26, 2, \
+ K210_CLK_IN0, K210_CLK_PLL0, K210_CLK_PLL1) \
+ MUX(K210_CLK_ACLK, K210_SYSCTL_SEL0, 0, 1) \
+ MUX(K210_CLK_SPI3, K210_SYSCTL_SEL0, 12, 1) \
+ MUX(K210_CLK_TIMER0, K210_SYSCTL_SEL0, 13, 1) \
+ MUX(K210_CLK_TIMER1, K210_SYSCTL_SEL0, 14, 1) \
+ MUX(K210_CLK_TIMER2, K210_SYSCTL_SEL0, 15, 1)
+
+#define _MUXIFY(id) K210_CLK_MUX_##id
+#define MUXIFY(id) _MUXIFY(id)
+
+enum k210_mux_id {
+#define MUX_PARENTS(id, ...) MUXIFY(id),
+ MUX_LIST
+#undef MUX_PARENTS
+ K210_CLK_MUX_NONE,
+};
+
+static const struct k210_mux_params k210_muxes[] = {
+#define MUX_PARENTS(id, _off, _shift, _width, ...) \
+ [MUXIFY(id)] = { \
+ .parents = { __VA_ARGS__ }, \
+ .num_parents = __count_args(__VA_ARGS__), \
+ .off = (_off), \
+ .shift = (_shift), \
+ .width = (_width), \
+ },
+ MUX_LIST
+#undef MUX_PARENTS
+};
+
+#undef MUX
+#undef MUX_LIST
+
+/**
+ * struct k210_pll_params - K210 PLL parameters
+ * @off: The offset of the PLL from the base sysctl address
+ * @shift: The offset of the LSB of the lock status
+ * @width: The number of bits in the lock status
+ */
+struct k210_pll_params {
+ u8 off;
+ u8 shift;
+ u8 width;
+};
+
+static const struct k210_pll_params k210_plls[] = {
+#define PLL(_off, _shift, _width) { \
+ .off = (_off), \
+ .shift = (_shift), \
+ .width = (_width), \
+}
+ [0] = PLL(K210_SYSCTL_PLL0, 0, 2),
+ [1] = PLL(K210_SYSCTL_PLL1, 8, 1),
+ [2] = PLL(K210_SYSCTL_PLL2, 16, 1),
+#undef PLL
+};
+
+/**
+ * enum k210_clk_flags - The type of a K210 clock
+ * @K210_CLKF_MUX: This clock has a mux and not a static parent
+ * @K210_CLKF_PLL: This clock is a PLL
+ */
+enum k210_clk_flags {
+ K210_CLKF_MUX = BIT(0),
+ K210_CLKF_PLL = BIT(1),
+};
+
+/**
+ * struct k210_clk_params - The parameters defining a K210 clock
+ * @name: The name of the clock
+ * @flags: A set of &enum k210_clk_flags defining which fields are valid
+ * @mux: An &enum k210_mux_id of this clock's mux
+ * @parent: The clock id of this clock's parent
+ * @pll: The id of the PLL (if this clock is a PLL)
+ * @div: An &enum k210_div_id of this clock's divider
+ * @gate: An &enum k210_gate_id of this clock's gate
+ */
+struct k210_clk_params {
+#if CONFIG_IS_ENABLED(CMD_CLK)
+ const char *name;
+#endif
+ u8 flags;
+ union {
+ u8 parent;
+ u8 mux;
+ };
+ union {
+ u8 pll;
+ struct {
+ u8 div;
+ u8 gate;
+ };
+ };
+};
+
+static const struct k210_clk_params k210_clks[] = {
+#if CONFIG_IS_ENABLED(CMD_CLK)
+#define NAME(_name) .name = (_name),
+#else
+#define NAME(name)
+#endif
+#define CLK(id, _name, _parent, _div, _gate) \
+ [id] = { \
+ NAME(_name) \
+ .parent = (_parent), \
+ .div = (_div), \
+ .gate = (_gate), \
+ }
+#define CLK_MUX(id, _name, _mux, _div, _gate) \
+ [id] = { \
+ NAME(_name) \
+ .flags = K210_CLKF_MUX, \
+ .mux = (_mux), \
+ .div = (_div), \
+ .gate = (_gate), \
+ }
+#define CLK_PLL(id, _pll, _parent) \
+ [id] = { \
+ NAME("pll" #_pll) \
+ .flags = K210_CLKF_PLL, \
+ .parent = (_parent), \
+ .pll = (_pll), \
+ }
+#define CLK_FULL(id, name) \
+ CLK_MUX(id, name, MUXIFY(id), DIVIFY(id), GATEIFY(id))
+#define CLK_NOMUX(id, name, parent) \
+ CLK(id, name, parent, DIVIFY(id), GATEIFY(id))
+#define CLK_DIV(id, name, parent) \
+ CLK(id, name, parent, DIVIFY(id), K210_CLK_GATE_NONE)
+#define CLK_GATE(id, name, parent) \
+ CLK(id, name, parent, K210_CLK_DIV_NONE, GATEIFY(id))
+ CLK_PLL(K210_CLK_PLL0, 0, K210_CLK_IN0),
+ CLK_PLL(K210_CLK_PLL1, 1, K210_CLK_IN0),
+ [K210_CLK_PLL2] = {
+ NAME("pll2")
+ .flags = K210_CLKF_MUX | K210_CLKF_PLL,
+ .mux = MUXIFY(K210_CLK_PLL2),
+ .pll = 2,
+ },
+ CLK_MUX(K210_CLK_ACLK, "aclk", MUXIFY(K210_CLK_ACLK),
+ DIVIFY(K210_CLK_ACLK), K210_CLK_GATE_NONE),
+ CLK_FULL(K210_CLK_SPI3, "spi3"),
+ CLK_FULL(K210_CLK_TIMER0, "timer0"),
+ CLK_FULL(K210_CLK_TIMER1, "timer1"),
+ CLK_FULL(K210_CLK_TIMER2, "timer2"),
+ CLK_NOMUX(K210_CLK_SRAM0, "sram0", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_SRAM1, "sram1", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_ROM, "rom", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_DVP, "dvp", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_APB0, "apb0", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_APB1, "apb1", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_APB2, "apb2", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_AI, "ai", K210_CLK_PLL1),
+ CLK_NOMUX(K210_CLK_I2S0, "i2s0", K210_CLK_PLL2),
+ CLK_NOMUX(K210_CLK_I2S1, "i2s1", K210_CLK_PLL2),
+ CLK_NOMUX(K210_CLK_I2S2, "i2s2", K210_CLK_PLL2),
+ CLK_NOMUX(K210_CLK_WDT0, "wdt0", K210_CLK_IN0),
+ CLK_NOMUX(K210_CLK_WDT1, "wdt1", K210_CLK_IN0),
+ CLK_NOMUX(K210_CLK_SPI0, "spi0", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_SPI1, "spi1", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_SPI2, "spi2", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_I2C0, "i2c0", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_I2C1, "i2c1", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_I2C2, "i2c2", K210_CLK_PLL0),
+ CLK_DIV(K210_CLK_I2S0_M, "i2s0_m", K210_CLK_PLL2),
+ CLK_DIV(K210_CLK_I2S1_M, "i2s1_m", K210_CLK_PLL2),
+ CLK_DIV(K210_CLK_I2S2_M, "i2s2_m", K210_CLK_PLL2),
+ CLK_DIV(K210_CLK_CLINT, "clint", K210_CLK_ACLK),
+ CLK_GATE(K210_CLK_CPU, "cpu", K210_CLK_ACLK),
+ CLK_GATE(K210_CLK_DMA, "dma", K210_CLK_ACLK),
+ CLK_GATE(K210_CLK_FFT, "fft", K210_CLK_ACLK),
+ CLK_GATE(K210_CLK_GPIO, "gpio", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_UART1, "uart1", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_UART2, "uart2", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_UART3, "uart3", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_FPIOA, "fpioa", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_SHA, "sha", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_AES, "aes", K210_CLK_APB1),
+ CLK_GATE(K210_CLK_OTP, "otp", K210_CLK_APB1),
+ CLK_GATE(K210_CLK_RTC, "rtc", K210_CLK_IN0),
+#undef NAME
+#undef CLK_PLL
+#undef CLK
+#undef CLK_FULL
+#undef CLK_NOMUX
+#undef CLK_DIV
+#undef CLK_GATE
+#undef CLK_LIST
+};
+
+#define K210_PLL_CLKR GENMASK(3, 0)
+#define K210_PLL_CLKF GENMASK(9, 4)
+#define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */
+#define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */
+#define K210_PLL_RESET BIT(20)
+#define K210_PLL_PWRD BIT(21) /* PoWeReD */
+#define K210_PLL_INTFB BIT(22) /* Internal FeedBack */
+#define K210_PLL_BYPASS BIT(23)
+#define K210_PLL_TEST BIT(24)
+#define K210_PLL_EN BIT(25)
+#define K210_PLL_TEST_EN BIT(26)
+
+#define K210_PLL_LOCK 0
+#define K210_PLL_CLEAR_SLIP 2
+#define K210_PLL_TEST_OUT 3
+
+#ifdef CONFIG_CLK_K210_SET_RATE
+static int k210_pll_enable(struct k210_clk_priv *priv, int id);
+static int k210_pll_disable(struct k210_clk_priv *priv, int id);
+static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in);
+
+/*
+ * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
+ * General-Purpose PLL. The logical layout of the PLL with internal feedback is
+ * approximately the following:
+ *
+ * +---------------+
+ * |reference clock|
+ * +---------------+
+ * |
+ * v
+ * +--+
+ * |/r|
+ * +--+
+ * |
+ * v
+ * +-------------+
+ * |divided clock|
+ * +-------------+
+ * |
+ * v
+ * +--------------+
+ * |phase detector|<---+
+ * +--------------+ |
+ * | |
+ * v +--------------+
+ * +---+ |feedback clock|
+ * |VCO| +--------------+
+ * +---+ ^
+ * | +--+ |
+ * +--->|/f|---+
+ * | +--+
+ * v
+ * +---+
+ * |/od|
+ * +---+
+ * |
+ * v
+ * +------+
+ * |output|
+ * +------+
+ *
+ * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
+ * the effect of the division by f is to multiply the input frequency. The
+ * equation for the output rate is
+ * rate = (rate_in * f) / (r * od).
+ * Moving knowns to one side of the equation, we get
+ * rate / rate_in = f / (r * od)
+ * Rearranging slightly,
+ * abs_error = abs((rate / rate_in) - (f / (r * od))).
+ * To get relative, error, we divide by the expected ratio
+ * error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
+ * Simplifying,
+ * error = abs(1 - f / (r * od)) / (rate / rate_in)
+ * error = abs(1 - (f * rate_in) / (r * od * rate))
+ * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
+ * error = abs((f * inv_ratio) / (r * od) - 1)
+ * This is the error used in evaluating parameters.
+ *
+ * r and od are four bits each, while f is six bits. Because r and od are
+ * multiplied together, instead of the full 256 values possible if both bits
+ * were used fully, there are only 97 distinct products. Combined with f, there
+ * are 6208 theoretical settings for the PLL. However, most of these settings
+ * can be ruled out immediately because they do not have the correct ratio.
+ *
+ * In addition to the constraint of approximating the desired ratio, parameters
+ * must also keep internal pll frequencies within acceptable ranges. The divided
+ * clock's minimum and maximum frequencies have a ratio of around 128. This
+ * leaves fairly substantial room to work with, especially since the only
+ * affected parameter is r. The VCO's minimum and maximum frequency have a ratio
+ * of 5, which is considerably more restrictive.
+ *
+ * The r and od factors are stored in a table. This is to make it easy to find
+ * the next-largest product. Some products have multiple factorizations, but
+ * only when one factor has at least a 2.5x ratio to the factors of the other
+ * factorization. This is because any smaller ratio would not make a difference
+ * when ensuring the VCO's frequency is within spec.
+ *
+ * Throughout the calculation function, fixed point arithmetic is used. Because
+ * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
+ * 32.32 fixed-point numbers are used to represent ratios. In general, to
+ * implement division, the numerator is first multiplied by 2^32. This gives a
+ * result where the whole number part is in the upper 32 bits, and the fraction
+ * is in the lower 32 bits.
+ *
+ * In general, rounding is done to the closest integer. This helps find the best
+ * approximation for the ratio. Rounding in one direction (e.g down) could cause
+ * the function to miss a better ratio with one of the parameters increased by
+ * one.
+ */
+
+/*
+ * The factors table was generated with the following python code:
+ *
+ * def p(x, y):
+ * return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
+ *
+ * factors = {}
+ * for i in range(1, 17):
+ * for j in range(1, 17):
+ * fs = factors.get(i*j) or []
+ * if fs == [] or all([
+ * (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
+ * for (x, y) in fs]):
+ * fs.append((i, j))
+ * factors[i*j] = fs
+ *
+ * for k, l in sorted(factors.items()):
+ * for v in l:
+ * print("PACK(%s, %s)," % v)
+ */
+#define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF))
+#define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1)
+#define UNPACK_OD(val) (((val) & 0xF) + 1)
+static const u8 factors[] = {
+ PACK(1, 1),
+ PACK(1, 2),
+ PACK(1, 3),
+ PACK(1, 4),
+ PACK(1, 5),
+ PACK(1, 6),
+ PACK(1, 7),
+ PACK(1, 8),
+ PACK(1, 9),
+ PACK(3, 3),
+ PACK(1, 10),
+ PACK(1, 11),
+ PACK(1, 12),
+ PACK(3, 4),
+ PACK(1, 13),
+ PACK(1, 14),
+ PACK(1, 15),
+ PACK(3, 5),
+ PACK(1, 16),
+ PACK(4, 4),
+ PACK(2, 9),
+ PACK(2, 10),
+ PACK(3, 7),
+ PACK(2, 11),
+ PACK(2, 12),
+ PACK(5, 5),
+ PACK(2, 13),
+ PACK(3, 9),
+ PACK(2, 14),
+ PACK(2, 15),
+ PACK(2, 16),
+ PACK(3, 11),
+ PACK(5, 7),
+ PACK(3, 12),
+ PACK(3, 13),
+ PACK(4, 10),
+ PACK(3, 14),
+ PACK(4, 11),
+ PACK(3, 15),
+ PACK(3, 16),
+ PACK(7, 7),
+ PACK(5, 10),
+ PACK(4, 13),
+ PACK(6, 9),
+ PACK(5, 11),
+ PACK(4, 14),
+ PACK(4, 15),
+ PACK(7, 9),
+ PACK(4, 16),
+ PACK(5, 13),
+ PACK(6, 11),
+ PACK(5, 14),
+ PACK(6, 12),
+ PACK(5, 15),
+ PACK(7, 11),
+ PACK(6, 13),
+ PACK(5, 16),
+ PACK(9, 9),
+ PACK(6, 14),
+ PACK(8, 11),
+ PACK(6, 15),
+ PACK(7, 13),
+ PACK(6, 16),
+ PACK(7, 14),
+ PACK(9, 11),
+ PACK(10, 10),
+ PACK(8, 13),
+ PACK(7, 15),
+ PACK(9, 12),
+ PACK(10, 11),
+ PACK(7, 16),
+ PACK(9, 13),
+ PACK(8, 15),
+ PACK(11, 11),
+ PACK(9, 14),
+ PACK(8, 16),
+ PACK(10, 13),
+ PACK(11, 12),
+ PACK(9, 15),
+ PACK(10, 14),
+ PACK(11, 13),
+ PACK(9, 16),
+ PACK(10, 15),
+ PACK(11, 14),
+ PACK(12, 13),
+ PACK(10, 16),
+ PACK(11, 15),
+ PACK(12, 14),
+ PACK(13, 13),
+ PACK(11, 16),
+ PACK(12, 15),
+ PACK(13, 14),
+ PACK(12, 16),
+ PACK(13, 15),
+ PACK(14, 14),
+ PACK(13, 16),
+ PACK(14, 15),
+ PACK(14, 16),
+ PACK(15, 15),
+ PACK(15, 16),
+ PACK(16, 16),
+};
+
+TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
+ struct k210_pll_config *best)
+{
+ int i;
+ s64 error, best_error;
+ u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */
+ u64 max_r;
+ u64 r, f, od;
+
+ /*
+ * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
+ * VCO frequency. These are not the same limits as below because od can
+ * reduce the output frequency by 16.
+ */
+ if (rate > 1750000000 || rate < 21250000)
+ return -EINVAL;
+
+ /* Similar restrictions on the input rate */
+ if (rate_in > 1750000000 || rate_in < 13300000)
+ return -EINVAL;
+
+ ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in);
+ inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
+ /* Can't increase by more than 64 or reduce by more than 256 */
+ if (rate > rate_in && ratio > (64ULL << 32))
+ return -EINVAL;
+ else if (rate <= rate_in && inv_ratio > (256ULL << 32))
+ return -EINVAL;
+
+ /*
+ * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3
+ * MHz. There is no minimum, since the only way to get a higher input
+ * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
+ * cannot output frequencies greater than 1.75 GHz, the minimum would
+ * never be greater than one.
+ */
+ max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000);
+
+ /* Variables get immediately incremented, so start at -1th iteration */
+ i = -1;
+ f = 0;
+ r = 0;
+ od = 0;
+ best_error = S64_MAX;
+ error = best_error;
+ /* do-while here so we always try at least one ratio */
+ do {
+ /*
+ * Whether we swapped r and od while enforcing frequency limits
+ */
+ bool swapped = false;
+ u64 last_od = od;
+ u64 last_r = r;
+
+ /*
+ * Try the next largest value for f (or r and od) and
+ * recalculate the other parameters based on that
+ */
+ if (rate > rate_in) {
+ /*
+ * Skip factors of the same product if we already tried
+ * out that product
+ */
+ do {
+ i++;
+ r = UNPACK_R(factors[i]);
+ od = UNPACK_OD(factors[i]);
+ } while (i + 1 < ARRAY_SIZE(factors) &&
+ r * od == last_r * last_od);
+
+ /* Round close */
+ f = (r * od * ratio + BIT(31)) >> 32;
+ if (f > 64)
+ f = 64;
+ } else {
+ u64 tmp = ++f * inv_ratio;
+ bool round_up = !!(tmp & BIT(31));
+ u32 goal = (tmp >> 32) + round_up;
+ u32 err, last_err;
+
+ /* Get the next r/od pair in factors */
+ while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) {
+ i++;
+ r = UNPACK_R(factors[i]);
+ od = UNPACK_OD(factors[i]);
+ }
+
+ /*
+ * This is a case of double rounding. If we rounded up
+ * above, we need to round down (in cases of ties) here.
+ * This prevents off-by-one errors resulting from
+ * choosing X+2 over X when X.Y rounds up to X+1 and
+ * there is no r * od = X+1. For the converse, when X.Y
+ * is rounded down to X, we should choose X+1 over X-1.
+ */
+ err = abs(r * od - goal);
+ last_err = abs(last_r * last_od - goal);
+ if (last_err < err || (round_up && last_err == err)) {
+ i--;
+ r = last_r;
+ od = last_od;
+ }
+ }
+
+ /*
+ * Enforce limits on internal clock frequencies. If we
+ * aren't in spec, try swapping r and od. If everything is
+ * in-spec, calculate the relative error.
+ */
+ while (true) {
+ /*
+ * Whether the intermediate frequencies are out-of-spec
+ */
+ bool out_of_spec = false;
+
+ if (r > max_r) {
+ out_of_spec = true;
+ } else {
+ /*
+ * There is no way to only divide once; we need
+ * to examine the frequency with and without the
+ * effect of od.
+ */
+ u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);
+
+ if (vco > 1750000000 || vco < 340000000)
+ out_of_spec = true;
+ }
+
+ if (out_of_spec) {
+ if (!swapped) {
+ u64 tmp = r;
+
+ r = od;
+ od = tmp;
+ swapped = true;
+ continue;
+ } else {
+ /*
+ * Try looking ahead to see if there are
+ * additional factors for the same
+ * product.
+ */
+ if (i + 1 < ARRAY_SIZE(factors)) {
+ u64 new_r, new_od;
+
+ i++;
+ new_r = UNPACK_R(factors[i]);
+ new_od = UNPACK_OD(factors[i]);
+ if (r * od == new_r * new_od) {
+ r = new_r;
+ od = new_od;
+ swapped = false;
+ continue;
+ }
+ i--;
+ }
+ break;
+ }
+ }
+
+ error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od);
+ /* The lower 16 bits are spurious */
+ error = abs((error - BIT(32))) >> 16;
+
+ if (error < best_error) {
+ best->r = r;
+ best->f = f;
+ best->od = od;
+ best_error = error;
+ }
+ break;
+ }
+ } while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0);
+
+ if (best_error == S64_MAX)
+ return -EINVAL;
+
+ log_debug("best error %lld\n", best_error);
+ return 0;
+}
+
+static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
+ ulong rate_in)
+{
+ int err;
+ const struct k210_pll_params *pll = &k210_plls[id];
+ struct k210_pll_config config = {};
+ u32 reg;
+ ulong calc_rate;
+
+ if (rate_in < 0)
+ return rate_in;
+
+ err = k210_pll_calc_config(rate, rate_in, &config);
+ if (err)
+ return err;
+ log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od);
+
+ /* Don't bother setting the rate if we're already at that rate */
+ calc_rate = DIV_ROUND_DOWN_ULL(((u64)rate_in) * config.f,
+ config.r * config.od);
+ if (calc_rate == k210_pll_get_rate(priv, id, rate))
+ return calc_rate;
+
+ k210_pll_disable(priv, id);
+
+ reg = readl(priv->base + pll->off);
+ reg &= ~K210_PLL_CLKR
+ & ~K210_PLL_CLKF
+ & ~K210_PLL_CLKOD
+ & ~K210_PLL_BWADJ;
+ reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1)
+ | FIELD_PREP(K210_PLL_CLKF, config.f - 1)
+ | FIELD_PREP(K210_PLL_CLKOD, config.od - 1)
+ | FIELD_PREP(K210_PLL_BWADJ, config.f - 1);
+ writel(reg, priv->base + pll->off);
+
+ k210_pll_enable(priv, id);
+
+ serial_setbrg();
+ return k210_pll_get_rate(priv, id, rate);
+}
+#else
+static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
+ ulong rate_in)
+{
+ return -ENOSYS;
+}
+#endif /* CONFIG_CLK_K210_SET_RATE */
+
+static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id,
+ ulong rate_in)
+{
+ u64 r, f, od;
+ u32 reg = readl(priv->base + k210_plls[id].off);
+
+ if (rate_in < 0 || (reg & K210_PLL_BYPASS))
+ return rate_in;
+
+ if (!(reg & K210_PLL_PWRD))
+ return 0;
+
+ r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
+ f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
+ od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;
+
+ return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od);
+}
+
+/*
+ * Wait for the PLL to be locked. If the PLL is not locked, try clearing the
+ * slip before retrying
+ */
+static void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id)
+{
+ const struct k210_pll_params *pll = &k210_plls[id];
+ u32 mask = (BIT(pll->width) - 1) << pll->shift;
+
+ while (true) {
+ u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK);
+
+ if ((reg & mask) == mask)
+ break;
+
+ reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP);
+ writel(reg, priv->base + K210_SYSCTL_PLL_LOCK);
+ }
+}
+
+static bool k210_pll_enabled(u32 reg)
+{
+ return (reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) &&
+ !(reg & K210_PLL_RESET);
+}
+
+/* Adapted from sysctl_pll_enable */
+static int k210_pll_enable(struct k210_clk_priv *priv, int id)
+{
+ const struct k210_pll_params *pll = &k210_plls[id];
+ u32 reg = readl(priv->base + pll->off);
+
+ if (k210_pll_enabled(reg))
+ return 0;
+
+ reg |= K210_PLL_PWRD;
+ writel(reg, priv->base + pll->off);
+
+ /* Ensure reset is low before asserting it */
+ reg &= ~K210_PLL_RESET;
+ writel(reg, priv->base + pll->off);
+ reg |= K210_PLL_RESET;
+ writel(reg, priv->base + pll->off);
+ nop();
+ nop();
+ reg &= ~K210_PLL_RESET;
+ writel(reg, priv->base + pll->off);
+
+ k210_pll_waitfor_lock(priv, id);
+
+ reg &= ~K210_PLL_BYPASS;
+ reg |= K210_PLL_EN;
+ writel(reg, priv->base + pll->off);
+
+ return 0;
+}
+
+static int k210_pll_disable(struct k210_clk_priv *priv, int id)
+{
+ const struct k210_pll_params *pll = &k210_plls[id];
+ u32 reg = readl(priv->base + pll->off);
+
+ /*
+ * Bypassing before powering off is important so child clocks don't stop
+ * working. This is especially important for pll0, the indirect parent
+ * of the cpu clock.
+ */
+ reg |= K210_PLL_BYPASS;
+ writel(reg, priv->base + pll->off);
+
+ reg &= ~K210_PLL_PWRD;
+ reg &= ~K210_PLL_EN;
+ writel(reg, priv->base + pll->off);
+ return 0;
+}
+
+static u32 k210_clk_readl(struct k210_clk_priv *priv, u8 off, u8 shift,
+ u8 width)
+{
+ u32 reg = readl(priv->base + off);
+
+ return (reg >> shift) & (BIT(width) - 1);
+}
+
+static void k210_clk_writel(struct k210_clk_priv *priv, u8 off, u8 shift,
+ u8 width, u32 val)
+{
+ u32 reg = readl(priv->base + off);
+ u32 mask = (BIT(width) - 1) << shift;
+
+ reg &= ~mask;
+ reg |= mask & (val << shift);
+ writel(reg, priv->base + off);
+}
+
+static int k210_clk_get_parent(struct k210_clk_priv *priv, int id)
+{
+ u32 sel;
+ const struct k210_mux_params *mux;
+
+ if (!(k210_clks[id].flags & K210_CLKF_MUX))
+ return k210_clks[id].parent;
+ mux = &k210_muxes[k210_clks[id].mux];
+
+ sel = k210_clk_readl(priv, mux->off, mux->shift, mux->width);
+ assert(sel < mux->num_parents);
+ return mux->parents[sel];
+}
+
+static ulong do_k210_clk_get_rate(struct k210_clk_priv *priv, int id)
+{
+ int parent;
+ u32 val;
+ ulong parent_rate;
+ const struct k210_div_params *div;
+
+ if (id == K210_CLK_IN0)
+ return clk_get_rate(&priv->in0);
+
+ parent = k210_clk_get_parent(priv, id);
+ parent_rate = do_k210_clk_get_rate(priv, parent);
+
+ if (k210_clks[id].flags & K210_CLKF_PLL)
+ return k210_pll_get_rate(priv, k210_clks[id].pll, parent_rate);
+
+ if (k210_clks[id].div == K210_CLK_DIV_NONE)
+ return parent_rate;
+ div = &k210_divs[k210_clks[id].div];
+
+ if (div->type == K210_DIV_FIXED)
+ return parent_rate / div->div;
+
+ val = k210_clk_readl(priv, div->off, div->shift, div->width);
+ switch (div->type) {
+ case K210_DIV_ONE:
+ return parent_rate / (val + 1);
+ case K210_DIV_EVEN:
+ return parent_rate / 2 / (val + 1);
+ case K210_DIV_POWER:
+ /* This is ACLK, which has no divider on IN0 */
+ if (parent == K210_CLK_IN0)
+ return parent_rate;
+ return parent_rate / (2 << val);
+ default:
+ assert(false);
+ return -EINVAL;
+ };
+}
+
+static ulong k210_clk_get_rate(struct clk *clk)
+{
+ return do_k210_clk_get_rate(dev_get_priv(clk->dev), clk->id);
+}
+
+static int do_k210_clk_set_parent(struct k210_clk_priv *priv, int id, int new)
+{
+ int i;
+ const struct k210_mux_params *mux;
+
+ if (!(k210_clks[id].flags & K210_CLKF_MUX))
+ return -ENOSYS;
+ mux = &k210_muxes[k210_clks[id].mux];
+
+ for (i = 0; i < mux->num_parents; i++) {
+ if (mux->parents[i] == new) {
+ k210_clk_writel(priv, mux->off, mux->shift, mux->width,
+ i);
+ return 0;
+ }
+ }
+ return -EINVAL;
+}
+
+static int k210_clk_set_parent(struct clk *clk, struct clk *parent)
+{
+ return do_k210_clk_set_parent(dev_get_priv(clk->dev), clk->id,
+ parent->id);
+}
+
+static ulong k210_clk_set_rate(struct clk *clk, unsigned long rate)
+{
+ int parent, ret, err;
+ ulong rate_in, val;
+ const struct k210_div_params *div;
+ struct k210_clk_priv *priv = dev_get_priv(clk->dev);
+
+ if (clk->id == K210_CLK_IN0)
+ return clk_set_rate(&priv->in0, rate);
+
+ parent = k210_clk_get_parent(priv, clk->id);
+ rate_in = do_k210_clk_get_rate(priv, parent);
+
+ log_debug("id=%ld rate=%lu rate_in=%lu\n", clk->id, rate, rate_in);
+
+ if (clk->id == K210_CLK_PLL0) {
+ /* Bypass ACLK so the CPU keeps going */
+ ret = do_k210_clk_set_parent(priv, K210_CLK_ACLK, K210_CLK_IN0);
+ if (ret)
+ return ret;
+ } else if (clk->id == K210_CLK_PLL1 && gd->flags & GD_FLG_RELOC) {
+ /*
+ * We can't bypass the AI clock like we can ACLK, and after
+ * relocation we are using the AI ram.
+ */
+ return -EPERM;
+ }
+
+ if (k210_clks[clk->id].flags & K210_CLKF_PLL) {
+ ret = k210_pll_set_rate(priv, k210_clks[clk->id].pll, rate,
+ rate_in);
+ if (!IS_ERR_VALUE(ret) && clk->id == K210_CLK_PLL0) {
+ /*
+ * This may have the side effect of reparenting ACLK,
+ * but I don't really want to keep track of what the old
+ * parent was.
+ */
+ err = do_k210_clk_set_parent(priv, K210_CLK_ACLK,
+ K210_CLK_PLL0);
+ if (err)
+ return err;
+ }
+ return ret;
+ }
+
+ if (k210_clks[clk->id].div == K210_CLK_DIV_NONE)
+ return -ENOSYS;
+ div = &k210_divs[k210_clks[clk->id].div];
+
+ switch (div->type) {
+ case K210_DIV_ONE:
+ val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
+ val = val ? val - 1 : 0;
+ break;
+ case K210_DIV_EVEN:
+ val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, 2 * rate);
+ break;
+ case K210_DIV_POWER:
+ /* This is ACLK, which has no divider on IN0 */
+ if (parent == K210_CLK_IN0)
+ return -ENOSYS;
+
+ val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
+ val = __ffs(val);
+ break;
+ default:
+ assert(false);
+ return -EINVAL;
+ };
+
+ val = val ? val - 1 : 0;
+ k210_clk_writel(priv, div->off, div->shift, div->width, val);
+ return do_k210_clk_get_rate(priv, clk->id);
+}
+
+static int k210_clk_endisable(struct k210_clk_priv *priv, int id, bool enable)
+{
+ int parent = k210_clk_get_parent(priv, id);
+ const struct k210_gate_params *gate;
+
+ if (id == K210_CLK_IN0) {
+ if (enable)
+ return clk_enable(&priv->in0);
+ else
+ return clk_disable(&priv->in0);
+ }
+
+ /* Only recursively enable clocks since we don't track refcounts */
+ if (enable) {
+ int ret = k210_clk_endisable(priv, parent, true);
+
+ if (ret && ret != -ENOSYS)
+ return ret;
+ }
+
+ if (k210_clks[id].flags & K210_CLKF_PLL) {
+ if (enable)
+ return k210_pll_enable(priv, k210_clks[id].pll);
+ else
+ return k210_pll_disable(priv, k210_clks[id].pll);
+ }
+
+ if (k210_clks[id].gate == K210_CLK_GATE_NONE)
+ return -ENOSYS;
+ gate = &k210_gates[k210_clks[id].gate];
+
+ k210_clk_writel(priv, gate->off, gate->bit_idx, 1, enable);
+ return 0;
+}
+
+static int k210_clk_enable(struct clk *clk)
+{
+ return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, true);
+}
+
+static int k210_clk_disable(struct clk *clk)
+{
+ return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, false);
+}
+
+static int k210_clk_request(struct clk *clk)
+{
+ if (clk->id >= ARRAY_SIZE(k210_clks))
+ return -EINVAL;
+ return 0;
+}
+
+static const struct clk_ops k210_clk_ops = {
+ .request = k210_clk_request,
+ .set_rate = k210_clk_set_rate,
+ .get_rate = k210_clk_get_rate,
+ .set_parent = k210_clk_set_parent,
+ .enable = k210_clk_enable,
+ .disable = k210_clk_disable,
+};
+
+static int k210_clk_probe(struct udevice *dev)
+{
+ int ret;
+ struct k210_clk_priv *priv = dev_get_priv(dev);
+
+ priv->base = dev_read_addr_ptr(dev_get_parent(dev));
+ if (!priv->base)
+ return -EINVAL;
+
+ ret = clk_get_by_index(dev, 0, &priv->in0);
+ if (ret)
+ return ret;
+
+ /*
+ * Force setting defaults, even before relocation. This is so we can
+ * set the clock rate for PLL1 before we relocate into aisram.
+ */
+ if (!(gd->flags & GD_FLG_RELOC))
+ clk_set_defaults(dev, CLK_DEFAULTS_POST_FORCE);
+
+ return 0;
+}
+
+static const struct udevice_id k210_clk_ids[] = {
+ { .compatible = "kendryte,k210-clk" },
+ { },
+};
+
+U_BOOT_DRIVER(k210_clk) = {
+ .name = "k210_clk",
+ .id = UCLASS_CLK,
+ .of_match = k210_clk_ids,
+ .ops = &k210_clk_ops,
+ .probe = k210_clk_probe,
+ .priv_auto = sizeof(struct k210_clk_priv),
+};
+
+#if CONFIG_IS_ENABLED(CMD_CLK)
+static char show_enabled(struct k210_clk_priv *priv, int id)
+{
+ bool enabled;
+
+ if (k210_clks[id].flags & K210_CLKF_PLL) {
+ const struct k210_pll_params *pll =
+ &k210_plls[k210_clks[id].pll];
+
+ enabled = k210_pll_enabled(readl(priv->base + pll->off));
+ } else if (k210_clks[id].gate == K210_CLK_GATE_NONE) {
+ return '-';
+ } else {
+ const struct k210_gate_params *gate =
+ &k210_gates[k210_clks[id].gate];
+
+ enabled = k210_clk_readl(priv, gate->off, gate->bit_idx, 1);
+ }
+
+ return enabled ? 'y' : 'n';
+}
+
+static void show_clks(struct k210_clk_priv *priv, int id, int depth)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(k210_clks); i++) {
+ if (k210_clk_get_parent(priv, i) != id)
+ continue;
+
+ printf(" %-9lu %-7c %*s%s\n", do_k210_clk_get_rate(priv, i),
+ show_enabled(priv, i), depth * 4, "",
+ k210_clks[i].name);
+
+ show_clks(priv, i, depth + 1);
+ }
+}
+
+int soc_clk_dump(void)
+{
+ int ret;
+ struct udevice *dev;
+ struct k210_clk_priv *priv;
+
+ ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(k210_clk),
+ &dev);
+ if (ret)
+ return ret;
+ priv = dev_get_priv(dev);
+
+ puts(" Rate Enabled Name\n");
+ puts("------------------------\n");
+ printf(" %-9lu %-7c %*s%s\n", clk_get_rate(&priv->in0), 'y', 0, "",
+ priv->in0.dev->name);
+ show_clks(priv, K210_CLK_IN0, 1);
+ return 0;
+}
+#endif
+++ /dev/null
-config CLK_K210
- bool "Clock support for Kendryte K210"
- depends on CLK
- help
- This enables support clock driver for Kendryte K210 platforms.
-
-config CLK_K210_SET_RATE
- bool "Enable setting the Kendryte K210 PLL rate"
- depends on CLK_K210
- help
- Add functionality to calculate new rates for K210 PLLs. Enabling this
- feature adds around 1K to U-Boot's final size.
+++ /dev/null
-obj-y += clk.o
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0+
-/*
- * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
- */
-#define LOG_CATEGORY UCLASS_CLK
-
-#include <common.h>
-#include <clk.h>
-#include <clk-uclass.h>
-#include <div64.h>
-#include <dm.h>
-#include <log.h>
-#include <mapmem.h>
-#include <serial.h>
-#include <dt-bindings/clock/k210-sysctl.h>
-#include <dt-bindings/mfd/k210-sysctl.h>
-#include <kendryte/pll.h>
-#include <linux/bitfield.h>
-
-DECLARE_GLOBAL_DATA_PTR;
-
-/**
- * struct k210_clk_priv - K210 clock driver private data
- * @base: The base address of the sysctl device
- * @in0: The "in0" external oscillator
- */
-struct k210_clk_priv {
- void __iomem *base;
- struct clk in0;
-};
-
-/*
- * All parameters for different sub-clocks are collected into parameter arrays.
- * These parameters are then initialized by the clock which uses them during
- * probe. To save space, ids are automatically generated for each sub-clock by
- * using an enum. Instead of storing a parameter struct for each clock, even for
- * those clocks which don't use a particular type of sub-clock, we can just
- * store the parameters for the clocks which need them.
- *
- * So why do it like this? Arranging all the sub-clocks together makes it very
- * easy to find bugs in the code.
- */
-
-/**
- * enum k210_clk_div_type - The type of divider
- * @K210_DIV_ONE: freq = parent / (reg + 1)
- * @K210_DIV_EVEN: freq = parent / 2 / (reg + 1)
- * @K210_DIV_POWER: freq = parent / (2 << reg)
- * @K210_DIV_FIXED: freq = parent / factor
- */
-enum k210_clk_div_type {
- K210_DIV_ONE,
- K210_DIV_EVEN,
- K210_DIV_POWER,
- K210_DIV_FIXED,
-};
-
-/**
- * struct k210_div_params - Parameters for dividing clocks
- * @type: An &enum k210_clk_div_type specifying the dividing formula
- * @off: The offset of the divider from the sysctl base address
- * @shift: The offset of the LSB of the divider
- * @width: The number of bits in the divider
- * @div: The fixed divisor for this divider
- */
-struct k210_div_params {
- u8 type;
- union {
- struct {
- u8 off;
- u8 shift;
- u8 width;
- };
- u8 div;
- };
-};
-
-#define DIV_LIST \
- DIV(K210_CLK_ACLK, K210_SYSCTL_SEL0, 1, 2, K210_DIV_POWER) \
- DIV(K210_CLK_APB0, K210_SYSCTL_SEL0, 3, 3, K210_DIV_ONE) \
- DIV(K210_CLK_APB1, K210_SYSCTL_SEL0, 6, 3, K210_DIV_ONE) \
- DIV(K210_CLK_APB2, K210_SYSCTL_SEL0, 9, 3, K210_DIV_ONE) \
- DIV(K210_CLK_SRAM0, K210_SYSCTL_THR0, 0, 4, K210_DIV_ONE) \
- DIV(K210_CLK_SRAM1, K210_SYSCTL_THR0, 4, 4, K210_DIV_ONE) \
- DIV(K210_CLK_AI, K210_SYSCTL_THR0, 8, 4, K210_DIV_ONE) \
- DIV(K210_CLK_DVP, K210_SYSCTL_THR0, 12, 4, K210_DIV_ONE) \
- DIV(K210_CLK_ROM, K210_SYSCTL_THR0, 16, 4, K210_DIV_ONE) \
- DIV(K210_CLK_SPI0, K210_SYSCTL_THR1, 0, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_SPI1, K210_SYSCTL_THR1, 8, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_SPI2, K210_SYSCTL_THR1, 16, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_SPI3, K210_SYSCTL_THR1, 24, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_TIMER0, K210_SYSCTL_THR2, 0, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_TIMER1, K210_SYSCTL_THR2, 8, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_TIMER2, K210_SYSCTL_THR2, 16, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_I2S0, K210_SYSCTL_THR3, 0, 16, K210_DIV_EVEN) \
- DIV(K210_CLK_I2S1, K210_SYSCTL_THR3, 16, 16, K210_DIV_EVEN) \
- DIV(K210_CLK_I2S2, K210_SYSCTL_THR4, 0, 16, K210_DIV_EVEN) \
- DIV(K210_CLK_I2S0_M, K210_SYSCTL_THR4, 16, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_I2S1_M, K210_SYSCTL_THR4, 24, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_I2S2_M, K210_SYSCTL_THR4, 0, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_I2C0, K210_SYSCTL_THR5, 8, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_I2C1, K210_SYSCTL_THR5, 16, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_I2C2, K210_SYSCTL_THR5, 24, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_WDT0, K210_SYSCTL_THR6, 0, 8, K210_DIV_EVEN) \
- DIV(K210_CLK_WDT1, K210_SYSCTL_THR6, 8, 8, K210_DIV_EVEN) \
- DIV_FIXED(K210_CLK_CLINT, 50) \
-
-#define _DIVIFY(id) K210_CLK_DIV_##id
-#define DIVIFY(id) _DIVIFY(id)
-
-enum k210_div_id {
-#define DIV(id, ...) DIVIFY(id),
-#define DIV_FIXED DIV
- DIV_LIST
-#undef DIV
-#undef DIV_FIXED
- K210_CLK_DIV_NONE,
-};
-
-static const struct k210_div_params k210_divs[] = {
-#define DIV(id, _off, _shift, _width, _type) \
- [DIVIFY(id)] = { \
- .type = (_type), \
- .off = (_off), \
- .shift = (_shift), \
- .width = (_width), \
- },
-#define DIV_FIXED(id, _div) \
- [DIVIFY(id)] = { \
- .type = K210_DIV_FIXED, \
- .div = (_div) \
- },
- DIV_LIST
-#undef DIV
-#undef DIV_FIXED
-};
-
-#undef DIV
-#undef DIV_LIST
-
-/**
- * struct k210_gate_params - Parameters for gated clocks
- * @off: The offset of the gate from the sysctl base address
- * @bit_idx: The index of the bit within the register
- */
-struct k210_gate_params {
- u8 off;
- u8 bit_idx;
-};
-
-#define GATE_LIST \
- GATE(K210_CLK_CPU, K210_SYSCTL_EN_CENT, 0) \
- GATE(K210_CLK_SRAM0, K210_SYSCTL_EN_CENT, 1) \
- GATE(K210_CLK_SRAM1, K210_SYSCTL_EN_CENT, 2) \
- GATE(K210_CLK_APB0, K210_SYSCTL_EN_CENT, 3) \
- GATE(K210_CLK_APB1, K210_SYSCTL_EN_CENT, 4) \
- GATE(K210_CLK_APB2, K210_SYSCTL_EN_CENT, 5) \
- GATE(K210_CLK_ROM, K210_SYSCTL_EN_PERI, 0) \
- GATE(K210_CLK_DMA, K210_SYSCTL_EN_PERI, 1) \
- GATE(K210_CLK_AI, K210_SYSCTL_EN_PERI, 2) \
- GATE(K210_CLK_DVP, K210_SYSCTL_EN_PERI, 3) \
- GATE(K210_CLK_FFT, K210_SYSCTL_EN_PERI, 4) \
- GATE(K210_CLK_GPIO, K210_SYSCTL_EN_PERI, 5) \
- GATE(K210_CLK_SPI0, K210_SYSCTL_EN_PERI, 6) \
- GATE(K210_CLK_SPI1, K210_SYSCTL_EN_PERI, 7) \
- GATE(K210_CLK_SPI2, K210_SYSCTL_EN_PERI, 8) \
- GATE(K210_CLK_SPI3, K210_SYSCTL_EN_PERI, 9) \
- GATE(K210_CLK_I2S0, K210_SYSCTL_EN_PERI, 10) \
- GATE(K210_CLK_I2S1, K210_SYSCTL_EN_PERI, 11) \
- GATE(K210_CLK_I2S2, K210_SYSCTL_EN_PERI, 12) \
- GATE(K210_CLK_I2C0, K210_SYSCTL_EN_PERI, 13) \
- GATE(K210_CLK_I2C1, K210_SYSCTL_EN_PERI, 14) \
- GATE(K210_CLK_I2C2, K210_SYSCTL_EN_PERI, 15) \
- GATE(K210_CLK_UART1, K210_SYSCTL_EN_PERI, 16) \
- GATE(K210_CLK_UART2, K210_SYSCTL_EN_PERI, 17) \
- GATE(K210_CLK_UART3, K210_SYSCTL_EN_PERI, 18) \
- GATE(K210_CLK_AES, K210_SYSCTL_EN_PERI, 19) \
- GATE(K210_CLK_FPIOA, K210_SYSCTL_EN_PERI, 20) \
- GATE(K210_CLK_TIMER0, K210_SYSCTL_EN_PERI, 21) \
- GATE(K210_CLK_TIMER1, K210_SYSCTL_EN_PERI, 22) \
- GATE(K210_CLK_TIMER2, K210_SYSCTL_EN_PERI, 23) \
- GATE(K210_CLK_WDT0, K210_SYSCTL_EN_PERI, 24) \
- GATE(K210_CLK_WDT1, K210_SYSCTL_EN_PERI, 25) \
- GATE(K210_CLK_SHA, K210_SYSCTL_EN_PERI, 26) \
- GATE(K210_CLK_OTP, K210_SYSCTL_EN_PERI, 27) \
- GATE(K210_CLK_RTC, K210_SYSCTL_EN_PERI, 29)
-
-#define _GATEIFY(id) K210_CLK_GATE_##id
-#define GATEIFY(id) _GATEIFY(id)
-
-enum k210_gate_id {
-#define GATE(id, ...) GATEIFY(id),
- GATE_LIST
-#undef GATE
- K210_CLK_GATE_NONE,
-};
-
-static const struct k210_gate_params k210_gates[] = {
-#define GATE(id, _off, _idx) \
- [GATEIFY(id)] = { \
- .off = (_off), \
- .bit_idx = (_idx), \
- },
- GATE_LIST
-#undef GATE
-};
-
-#undef GATE_LIST
-
-/* The most parents is PLL2 */
-#define K210_CLK_MAX_PARENTS 3
-
-/**
- * struct k210_mux_params - Parameters for muxed clocks
- * @parents: A list of parent clock ids
- * @num_parents: The number of parent clocks
- * @off: The offset of the mux from the base sysctl address
- * @shift: The offset of the LSB of the mux selector
- * @width: The number of bits in the mux selector
- */
-struct k210_mux_params {
- u8 parents[K210_CLK_MAX_PARENTS];
- u8 num_parents;
- u8 off;
- u8 shift;
- u8 width;
-};
-
-#define MUX(id, reg, shift, width) \
- MUX_PARENTS(id, reg, shift, width, K210_CLK_IN0, K210_CLK_PLL0)
-#define MUX_LIST \
- MUX_PARENTS(K210_CLK_PLL2, K210_SYSCTL_PLL2, 26, 2, \
- K210_CLK_IN0, K210_CLK_PLL0, K210_CLK_PLL1) \
- MUX(K210_CLK_ACLK, K210_SYSCTL_SEL0, 0, 1) \
- MUX(K210_CLK_SPI3, K210_SYSCTL_SEL0, 12, 1) \
- MUX(K210_CLK_TIMER0, K210_SYSCTL_SEL0, 13, 1) \
- MUX(K210_CLK_TIMER1, K210_SYSCTL_SEL0, 14, 1) \
- MUX(K210_CLK_TIMER2, K210_SYSCTL_SEL0, 15, 1)
-
-#define _MUXIFY(id) K210_CLK_MUX_##id
-#define MUXIFY(id) _MUXIFY(id)
-
-enum k210_mux_id {
-#define MUX_PARENTS(id, ...) MUXIFY(id),
- MUX_LIST
-#undef MUX_PARENTS
- K210_CLK_MUX_NONE,
-};
-
-static const struct k210_mux_params k210_muxes[] = {
-#define MUX_PARENTS(id, _off, _shift, _width, ...) \
- [MUXIFY(id)] = { \
- .parents = { __VA_ARGS__ }, \
- .num_parents = __count_args(__VA_ARGS__), \
- .off = (_off), \
- .shift = (_shift), \
- .width = (_width), \
- },
- MUX_LIST
-#undef MUX_PARENTS
-};
-
-#undef MUX
-#undef MUX_LIST
-
-/**
- * struct k210_pll_params - K210 PLL parameters
- * @off: The offset of the PLL from the base sysctl address
- * @shift: The offset of the LSB of the lock status
- * @width: The number of bits in the lock status
- */
-struct k210_pll_params {
- u8 off;
- u8 shift;
- u8 width;
-};
-
-static const struct k210_pll_params k210_plls[] = {
-#define PLL(_off, _shift, _width) { \
- .off = (_off), \
- .shift = (_shift), \
- .width = (_width), \
-}
- [0] = PLL(K210_SYSCTL_PLL0, 0, 2),
- [1] = PLL(K210_SYSCTL_PLL1, 8, 1),
- [2] = PLL(K210_SYSCTL_PLL2, 16, 1),
-#undef PLL
-};
-
-/**
- * enum k210_clk_flags - The type of a K210 clock
- * @K210_CLKF_MUX: This clock has a mux and not a static parent
- * @K210_CLKF_PLL: This clock is a PLL
- */
-enum k210_clk_flags {
- K210_CLKF_MUX = BIT(0),
- K210_CLKF_PLL = BIT(1),
-};
-
-/**
- * struct k210_clk_params - The parameters defining a K210 clock
- * @name: The name of the clock
- * @flags: A set of &enum k210_clk_flags defining which fields are valid
- * @mux: An &enum k210_mux_id of this clock's mux
- * @parent: The clock id of this clock's parent
- * @pll: The id of the PLL (if this clock is a PLL)
- * @div: An &enum k210_div_id of this clock's divider
- * @gate: An &enum k210_gate_id of this clock's gate
- */
-struct k210_clk_params {
-#if CONFIG_IS_ENABLED(CMD_CLK)
- const char *name;
-#endif
- u8 flags;
- union {
- u8 parent;
- u8 mux;
- };
- union {
- u8 pll;
- struct {
- u8 div;
- u8 gate;
- };
- };
-};
-
-static const struct k210_clk_params k210_clks[] = {
-#if CONFIG_IS_ENABLED(CMD_CLK)
-#define NAME(_name) .name = (_name),
-#else
-#define NAME(name)
-#endif
-#define CLK(id, _name, _parent, _div, _gate) \
- [id] = { \
- NAME(_name) \
- .parent = (_parent), \
- .div = (_div), \
- .gate = (_gate), \
- }
-#define CLK_MUX(id, _name, _mux, _div, _gate) \
- [id] = { \
- NAME(_name) \
- .flags = K210_CLKF_MUX, \
- .mux = (_mux), \
- .div = (_div), \
- .gate = (_gate), \
- }
-#define CLK_PLL(id, _pll, _parent) \
- [id] = { \
- NAME("pll" #_pll) \
- .flags = K210_CLKF_PLL, \
- .parent = (_parent), \
- .pll = (_pll), \
- }
-#define CLK_FULL(id, name) \
- CLK_MUX(id, name, MUXIFY(id), DIVIFY(id), GATEIFY(id))
-#define CLK_NOMUX(id, name, parent) \
- CLK(id, name, parent, DIVIFY(id), GATEIFY(id))
-#define CLK_DIV(id, name, parent) \
- CLK(id, name, parent, DIVIFY(id), K210_CLK_GATE_NONE)
-#define CLK_GATE(id, name, parent) \
- CLK(id, name, parent, K210_CLK_DIV_NONE, GATEIFY(id))
- CLK_PLL(K210_CLK_PLL0, 0, K210_CLK_IN0),
- CLK_PLL(K210_CLK_PLL1, 1, K210_CLK_IN0),
- [K210_CLK_PLL2] = {
- NAME("pll2")
- .flags = K210_CLKF_MUX | K210_CLKF_PLL,
- .mux = MUXIFY(K210_CLK_PLL2),
- .pll = 2,
- },
- CLK_MUX(K210_CLK_ACLK, "aclk", MUXIFY(K210_CLK_ACLK),
- DIVIFY(K210_CLK_ACLK), K210_CLK_GATE_NONE),
- CLK_FULL(K210_CLK_SPI3, "spi3"),
- CLK_FULL(K210_CLK_TIMER0, "timer0"),
- CLK_FULL(K210_CLK_TIMER1, "timer1"),
- CLK_FULL(K210_CLK_TIMER2, "timer2"),
- CLK_NOMUX(K210_CLK_SRAM0, "sram0", K210_CLK_ACLK),
- CLK_NOMUX(K210_CLK_SRAM1, "sram1", K210_CLK_ACLK),
- CLK_NOMUX(K210_CLK_ROM, "rom", K210_CLK_ACLK),
- CLK_NOMUX(K210_CLK_DVP, "dvp", K210_CLK_ACLK),
- CLK_NOMUX(K210_CLK_APB0, "apb0", K210_CLK_ACLK),
- CLK_NOMUX(K210_CLK_APB1, "apb1", K210_CLK_ACLK),
- CLK_NOMUX(K210_CLK_APB2, "apb2", K210_CLK_ACLK),
- CLK_NOMUX(K210_CLK_AI, "ai", K210_CLK_PLL1),
- CLK_NOMUX(K210_CLK_I2S0, "i2s0", K210_CLK_PLL2),
- CLK_NOMUX(K210_CLK_I2S1, "i2s1", K210_CLK_PLL2),
- CLK_NOMUX(K210_CLK_I2S2, "i2s2", K210_CLK_PLL2),
- CLK_NOMUX(K210_CLK_WDT0, "wdt0", K210_CLK_IN0),
- CLK_NOMUX(K210_CLK_WDT1, "wdt1", K210_CLK_IN0),
- CLK_NOMUX(K210_CLK_SPI0, "spi0", K210_CLK_PLL0),
- CLK_NOMUX(K210_CLK_SPI1, "spi1", K210_CLK_PLL0),
- CLK_NOMUX(K210_CLK_SPI2, "spi2", K210_CLK_PLL0),
- CLK_NOMUX(K210_CLK_I2C0, "i2c0", K210_CLK_PLL0),
- CLK_NOMUX(K210_CLK_I2C1, "i2c1", K210_CLK_PLL0),
- CLK_NOMUX(K210_CLK_I2C2, "i2c2", K210_CLK_PLL0),
- CLK_DIV(K210_CLK_I2S0_M, "i2s0_m", K210_CLK_PLL2),
- CLK_DIV(K210_CLK_I2S1_M, "i2s1_m", K210_CLK_PLL2),
- CLK_DIV(K210_CLK_I2S2_M, "i2s2_m", K210_CLK_PLL2),
- CLK_DIV(K210_CLK_CLINT, "clint", K210_CLK_ACLK),
- CLK_GATE(K210_CLK_CPU, "cpu", K210_CLK_ACLK),
- CLK_GATE(K210_CLK_DMA, "dma", K210_CLK_ACLK),
- CLK_GATE(K210_CLK_FFT, "fft", K210_CLK_ACLK),
- CLK_GATE(K210_CLK_GPIO, "gpio", K210_CLK_APB0),
- CLK_GATE(K210_CLK_UART1, "uart1", K210_CLK_APB0),
- CLK_GATE(K210_CLK_UART2, "uart2", K210_CLK_APB0),
- CLK_GATE(K210_CLK_UART3, "uart3", K210_CLK_APB0),
- CLK_GATE(K210_CLK_FPIOA, "fpioa", K210_CLK_APB0),
- CLK_GATE(K210_CLK_SHA, "sha", K210_CLK_APB0),
- CLK_GATE(K210_CLK_AES, "aes", K210_CLK_APB1),
- CLK_GATE(K210_CLK_OTP, "otp", K210_CLK_APB1),
- CLK_GATE(K210_CLK_RTC, "rtc", K210_CLK_IN0),
-#undef NAME
-#undef CLK_PLL
-#undef CLK
-#undef CLK_FULL
-#undef CLK_NOMUX
-#undef CLK_DIV
-#undef CLK_GATE
-#undef CLK_LIST
-};
-
-#define K210_PLL_CLKR GENMASK(3, 0)
-#define K210_PLL_CLKF GENMASK(9, 4)
-#define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */
-#define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */
-#define K210_PLL_RESET BIT(20)
-#define K210_PLL_PWRD BIT(21) /* PoWeReD */
-#define K210_PLL_INTFB BIT(22) /* Internal FeedBack */
-#define K210_PLL_BYPASS BIT(23)
-#define K210_PLL_TEST BIT(24)
-#define K210_PLL_EN BIT(25)
-#define K210_PLL_TEST_EN BIT(26)
-
-#define K210_PLL_LOCK 0
-#define K210_PLL_CLEAR_SLIP 2
-#define K210_PLL_TEST_OUT 3
-
-#ifdef CONFIG_CLK_K210_SET_RATE
-static int k210_pll_enable(struct k210_clk_priv *priv, int id);
-static int k210_pll_disable(struct k210_clk_priv *priv, int id);
-static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in);
-
-/*
- * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
- * General-Purpose PLL. The logical layout of the PLL with internal feedback is
- * approximately the following:
- *
- * +---------------+
- * |reference clock|
- * +---------------+
- * |
- * v
- * +--+
- * |/r|
- * +--+
- * |
- * v
- * +-------------+
- * |divided clock|
- * +-------------+
- * |
- * v
- * +--------------+
- * |phase detector|<---+
- * +--------------+ |
- * | |
- * v +--------------+
- * +---+ |feedback clock|
- * |VCO| +--------------+
- * +---+ ^
- * | +--+ |
- * +--->|/f|---+
- * | +--+
- * v
- * +---+
- * |/od|
- * +---+
- * |
- * v
- * +------+
- * |output|
- * +------+
- *
- * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
- * the effect of the division by f is to multiply the input frequency. The
- * equation for the output rate is
- * rate = (rate_in * f) / (r * od).
- * Moving knowns to one side of the equation, we get
- * rate / rate_in = f / (r * od)
- * Rearranging slightly,
- * abs_error = abs((rate / rate_in) - (f / (r * od))).
- * To get relative, error, we divide by the expected ratio
- * error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
- * Simplifying,
- * error = abs(1 - f / (r * od)) / (rate / rate_in)
- * error = abs(1 - (f * rate_in) / (r * od * rate))
- * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
- * error = abs((f * inv_ratio) / (r * od) - 1)
- * This is the error used in evaluating parameters.
- *
- * r and od are four bits each, while f is six bits. Because r and od are
- * multiplied together, instead of the full 256 values possible if both bits
- * were used fully, there are only 97 distinct products. Combined with f, there
- * are 6208 theoretical settings for the PLL. However, most of these settings
- * can be ruled out immediately because they do not have the correct ratio.
- *
- * In addition to the constraint of approximating the desired ratio, parameters
- * must also keep internal pll frequencies within acceptable ranges. The divided
- * clock's minimum and maximum frequencies have a ratio of around 128. This
- * leaves fairly substantial room to work with, especially since the only
- * affected parameter is r. The VCO's minimum and maximum frequency have a ratio
- * of 5, which is considerably more restrictive.
- *
- * The r and od factors are stored in a table. This is to make it easy to find
- * the next-largest product. Some products have multiple factorizations, but
- * only when one factor has at least a 2.5x ratio to the factors of the other
- * factorization. This is because any smaller ratio would not make a difference
- * when ensuring the VCO's frequency is within spec.
- *
- * Throughout the calculation function, fixed point arithmetic is used. Because
- * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
- * 32.32 fixed-point numbers are used to represent ratios. In general, to
- * implement division, the numerator is first multiplied by 2^32. This gives a
- * result where the whole number part is in the upper 32 bits, and the fraction
- * is in the lower 32 bits.
- *
- * In general, rounding is done to the closest integer. This helps find the best
- * approximation for the ratio. Rounding in one direction (e.g down) could cause
- * the function to miss a better ratio with one of the parameters increased by
- * one.
- */
-
-/*
- * The factors table was generated with the following python code:
- *
- * def p(x, y):
- * return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
- *
- * factors = {}
- * for i in range(1, 17):
- * for j in range(1, 17):
- * fs = factors.get(i*j) or []
- * if fs == [] or all([
- * (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
- * for (x, y) in fs]):
- * fs.append((i, j))
- * factors[i*j] = fs
- *
- * for k, l in sorted(factors.items()):
- * for v in l:
- * print("PACK(%s, %s)," % v)
- */
-#define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF))
-#define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1)
-#define UNPACK_OD(val) (((val) & 0xF) + 1)
-static const u8 factors[] = {
- PACK(1, 1),
- PACK(1, 2),
- PACK(1, 3),
- PACK(1, 4),
- PACK(1, 5),
- PACK(1, 6),
- PACK(1, 7),
- PACK(1, 8),
- PACK(1, 9),
- PACK(3, 3),
- PACK(1, 10),
- PACK(1, 11),
- PACK(1, 12),
- PACK(3, 4),
- PACK(1, 13),
- PACK(1, 14),
- PACK(1, 15),
- PACK(3, 5),
- PACK(1, 16),
- PACK(4, 4),
- PACK(2, 9),
- PACK(2, 10),
- PACK(3, 7),
- PACK(2, 11),
- PACK(2, 12),
- PACK(5, 5),
- PACK(2, 13),
- PACK(3, 9),
- PACK(2, 14),
- PACK(2, 15),
- PACK(2, 16),
- PACK(3, 11),
- PACK(5, 7),
- PACK(3, 12),
- PACK(3, 13),
- PACK(4, 10),
- PACK(3, 14),
- PACK(4, 11),
- PACK(3, 15),
- PACK(3, 16),
- PACK(7, 7),
- PACK(5, 10),
- PACK(4, 13),
- PACK(6, 9),
- PACK(5, 11),
- PACK(4, 14),
- PACK(4, 15),
- PACK(7, 9),
- PACK(4, 16),
- PACK(5, 13),
- PACK(6, 11),
- PACK(5, 14),
- PACK(6, 12),
- PACK(5, 15),
- PACK(7, 11),
- PACK(6, 13),
- PACK(5, 16),
- PACK(9, 9),
- PACK(6, 14),
- PACK(8, 11),
- PACK(6, 15),
- PACK(7, 13),
- PACK(6, 16),
- PACK(7, 14),
- PACK(9, 11),
- PACK(10, 10),
- PACK(8, 13),
- PACK(7, 15),
- PACK(9, 12),
- PACK(10, 11),
- PACK(7, 16),
- PACK(9, 13),
- PACK(8, 15),
- PACK(11, 11),
- PACK(9, 14),
- PACK(8, 16),
- PACK(10, 13),
- PACK(11, 12),
- PACK(9, 15),
- PACK(10, 14),
- PACK(11, 13),
- PACK(9, 16),
- PACK(10, 15),
- PACK(11, 14),
- PACK(12, 13),
- PACK(10, 16),
- PACK(11, 15),
- PACK(12, 14),
- PACK(13, 13),
- PACK(11, 16),
- PACK(12, 15),
- PACK(13, 14),
- PACK(12, 16),
- PACK(13, 15),
- PACK(14, 14),
- PACK(13, 16),
- PACK(14, 15),
- PACK(14, 16),
- PACK(15, 15),
- PACK(15, 16),
- PACK(16, 16),
-};
-
-TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
- struct k210_pll_config *best)
-{
- int i;
- s64 error, best_error;
- u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */
- u64 max_r;
- u64 r, f, od;
-
- /*
- * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
- * VCO frequency. These are not the same limits as below because od can
- * reduce the output frequency by 16.
- */
- if (rate > 1750000000 || rate < 21250000)
- return -EINVAL;
-
- /* Similar restrictions on the input rate */
- if (rate_in > 1750000000 || rate_in < 13300000)
- return -EINVAL;
-
- ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in);
- inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
- /* Can't increase by more than 64 or reduce by more than 256 */
- if (rate > rate_in && ratio > (64ULL << 32))
- return -EINVAL;
- else if (rate <= rate_in && inv_ratio > (256ULL << 32))
- return -EINVAL;
-
- /*
- * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3
- * MHz. There is no minimum, since the only way to get a higher input
- * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
- * cannot output frequencies greater than 1.75 GHz, the minimum would
- * never be greater than one.
- */
- max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000);
-
- /* Variables get immediately incremented, so start at -1th iteration */
- i = -1;
- f = 0;
- r = 0;
- od = 0;
- best_error = S64_MAX;
- error = best_error;
- /* do-while here so we always try at least one ratio */
- do {
- /*
- * Whether we swapped r and od while enforcing frequency limits
- */
- bool swapped = false;
- u64 last_od = od;
- u64 last_r = r;
-
- /*
- * Try the next largest value for f (or r and od) and
- * recalculate the other parameters based on that
- */
- if (rate > rate_in) {
- /*
- * Skip factors of the same product if we already tried
- * out that product
- */
- do {
- i++;
- r = UNPACK_R(factors[i]);
- od = UNPACK_OD(factors[i]);
- } while (i + 1 < ARRAY_SIZE(factors) &&
- r * od == last_r * last_od);
-
- /* Round close */
- f = (r * od * ratio + BIT(31)) >> 32;
- if (f > 64)
- f = 64;
- } else {
- u64 tmp = ++f * inv_ratio;
- bool round_up = !!(tmp & BIT(31));
- u32 goal = (tmp >> 32) + round_up;
- u32 err, last_err;
-
- /* Get the next r/od pair in factors */
- while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) {
- i++;
- r = UNPACK_R(factors[i]);
- od = UNPACK_OD(factors[i]);
- }
-
- /*
- * This is a case of double rounding. If we rounded up
- * above, we need to round down (in cases of ties) here.
- * This prevents off-by-one errors resulting from
- * choosing X+2 over X when X.Y rounds up to X+1 and
- * there is no r * od = X+1. For the converse, when X.Y
- * is rounded down to X, we should choose X+1 over X-1.
- */
- err = abs(r * od - goal);
- last_err = abs(last_r * last_od - goal);
- if (last_err < err || (round_up && last_err == err)) {
- i--;
- r = last_r;
- od = last_od;
- }
- }
-
- /*
- * Enforce limits on internal clock frequencies. If we
- * aren't in spec, try swapping r and od. If everything is
- * in-spec, calculate the relative error.
- */
- while (true) {
- /*
- * Whether the intermediate frequencies are out-of-spec
- */
- bool out_of_spec = false;
-
- if (r > max_r) {
- out_of_spec = true;
- } else {
- /*
- * There is no way to only divide once; we need
- * to examine the frequency with and without the
- * effect of od.
- */
- u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);
-
- if (vco > 1750000000 || vco < 340000000)
- out_of_spec = true;
- }
-
- if (out_of_spec) {
- if (!swapped) {
- u64 tmp = r;
-
- r = od;
- od = tmp;
- swapped = true;
- continue;
- } else {
- /*
- * Try looking ahead to see if there are
- * additional factors for the same
- * product.
- */
- if (i + 1 < ARRAY_SIZE(factors)) {
- u64 new_r, new_od;
-
- i++;
- new_r = UNPACK_R(factors[i]);
- new_od = UNPACK_OD(factors[i]);
- if (r * od == new_r * new_od) {
- r = new_r;
- od = new_od;
- swapped = false;
- continue;
- }
- i--;
- }
- break;
- }
- }
-
- error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od);
- /* The lower 16 bits are spurious */
- error = abs((error - BIT(32))) >> 16;
-
- if (error < best_error) {
- best->r = r;
- best->f = f;
- best->od = od;
- best_error = error;
- }
- break;
- }
- } while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0);
-
- if (best_error == S64_MAX)
- return -EINVAL;
-
- log_debug("best error %lld\n", best_error);
- return 0;
-}
-
-static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
- ulong rate_in)
-{
- int err;
- const struct k210_pll_params *pll = &k210_plls[id];
- struct k210_pll_config config = {};
- u32 reg;
- ulong calc_rate;
-
- if (rate_in < 0)
- return rate_in;
-
- err = k210_pll_calc_config(rate, rate_in, &config);
- if (err)
- return err;
- log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od);
-
- /* Don't bother setting the rate if we're already at that rate */
- calc_rate = DIV_ROUND_DOWN_ULL(((u64)rate_in) * config.f,
- config.r * config.od);
- if (calc_rate == k210_pll_get_rate(priv, id, rate))
- return calc_rate;
-
- k210_pll_disable(priv, id);
-
- reg = readl(priv->base + pll->off);
- reg &= ~K210_PLL_CLKR
- & ~K210_PLL_CLKF
- & ~K210_PLL_CLKOD
- & ~K210_PLL_BWADJ;
- reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1)
- | FIELD_PREP(K210_PLL_CLKF, config.f - 1)
- | FIELD_PREP(K210_PLL_CLKOD, config.od - 1)
- | FIELD_PREP(K210_PLL_BWADJ, config.f - 1);
- writel(reg, priv->base + pll->off);
-
- k210_pll_enable(priv, id);
-
- serial_setbrg();
- return k210_pll_get_rate(priv, id, rate);
-}
-#else
-static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
- ulong rate_in)
-{
- return -ENOSYS;
-}
-#endif /* CONFIG_CLK_K210_SET_RATE */
-
-static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id,
- ulong rate_in)
-{
- u64 r, f, od;
- u32 reg = readl(priv->base + k210_plls[id].off);
-
- if (rate_in < 0 || (reg & K210_PLL_BYPASS))
- return rate_in;
-
- if (!(reg & K210_PLL_PWRD))
- return 0;
-
- r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
- f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
- od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;
-
- return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od);
-}
-
-/*
- * Wait for the PLL to be locked. If the PLL is not locked, try clearing the
- * slip before retrying
- */
-static void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id)
-{
- const struct k210_pll_params *pll = &k210_plls[id];
- u32 mask = (BIT(pll->width) - 1) << pll->shift;
-
- while (true) {
- u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK);
-
- if ((reg & mask) == mask)
- break;
-
- reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP);
- writel(reg, priv->base + K210_SYSCTL_PLL_LOCK);
- }
-}
-
-static bool k210_pll_enabled(u32 reg)
-{
- return (reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) &&
- !(reg & K210_PLL_RESET);
-}
-
-/* Adapted from sysctl_pll_enable */
-static int k210_pll_enable(struct k210_clk_priv *priv, int id)
-{
- const struct k210_pll_params *pll = &k210_plls[id];
- u32 reg = readl(priv->base + pll->off);
-
- if (k210_pll_enabled(reg))
- return 0;
-
- reg |= K210_PLL_PWRD;
- writel(reg, priv->base + pll->off);
-
- /* Ensure reset is low before asserting it */
- reg &= ~K210_PLL_RESET;
- writel(reg, priv->base + pll->off);
- reg |= K210_PLL_RESET;
- writel(reg, priv->base + pll->off);
- nop();
- nop();
- reg &= ~K210_PLL_RESET;
- writel(reg, priv->base + pll->off);
-
- k210_pll_waitfor_lock(priv, id);
-
- reg &= ~K210_PLL_BYPASS;
- reg |= K210_PLL_EN;
- writel(reg, priv->base + pll->off);
-
- return 0;
-}
-
-static int k210_pll_disable(struct k210_clk_priv *priv, int id)
-{
- const struct k210_pll_params *pll = &k210_plls[id];
- u32 reg = readl(priv->base + pll->off);
-
- /*
- * Bypassing before powering off is important so child clocks don't stop
- * working. This is especially important for pll0, the indirect parent
- * of the cpu clock.
- */
- reg |= K210_PLL_BYPASS;
- writel(reg, priv->base + pll->off);
-
- reg &= ~K210_PLL_PWRD;
- reg &= ~K210_PLL_EN;
- writel(reg, priv->base + pll->off);
- return 0;
-}
-
-static u32 k210_clk_readl(struct k210_clk_priv *priv, u8 off, u8 shift,
- u8 width)
-{
- u32 reg = readl(priv->base + off);
-
- return (reg >> shift) & (BIT(width) - 1);
-}
-
-static void k210_clk_writel(struct k210_clk_priv *priv, u8 off, u8 shift,
- u8 width, u32 val)
-{
- u32 reg = readl(priv->base + off);
- u32 mask = (BIT(width) - 1) << shift;
-
- reg &= ~mask;
- reg |= mask & (val << shift);
- writel(reg, priv->base + off);
-}
-
-static int k210_clk_get_parent(struct k210_clk_priv *priv, int id)
-{
- u32 sel;
- const struct k210_mux_params *mux;
-
- if (!(k210_clks[id].flags & K210_CLKF_MUX))
- return k210_clks[id].parent;
- mux = &k210_muxes[k210_clks[id].mux];
-
- sel = k210_clk_readl(priv, mux->off, mux->shift, mux->width);
- assert(sel < mux->num_parents);
- return mux->parents[sel];
-}
-
-static ulong do_k210_clk_get_rate(struct k210_clk_priv *priv, int id)
-{
- int parent;
- u32 val;
- ulong parent_rate;
- const struct k210_div_params *div;
-
- if (id == K210_CLK_IN0)
- return clk_get_rate(&priv->in0);
-
- parent = k210_clk_get_parent(priv, id);
- parent_rate = do_k210_clk_get_rate(priv, parent);
-
- if (k210_clks[id].flags & K210_CLKF_PLL)
- return k210_pll_get_rate(priv, k210_clks[id].pll, parent_rate);
-
- if (k210_clks[id].div == K210_CLK_DIV_NONE)
- return parent_rate;
- div = &k210_divs[k210_clks[id].div];
-
- if (div->type == K210_DIV_FIXED)
- return parent_rate / div->div;
-
- val = k210_clk_readl(priv, div->off, div->shift, div->width);
- switch (div->type) {
- case K210_DIV_ONE:
- return parent_rate / (val + 1);
- case K210_DIV_EVEN:
- return parent_rate / 2 / (val + 1);
- case K210_DIV_POWER:
- /* This is ACLK, which has no divider on IN0 */
- if (parent == K210_CLK_IN0)
- return parent_rate;
- return parent_rate / (2 << val);
- default:
- assert(false);
- return -EINVAL;
- };
-}
-
-static ulong k210_clk_get_rate(struct clk *clk)
-{
- return do_k210_clk_get_rate(dev_get_priv(clk->dev), clk->id);
-}
-
-static int do_k210_clk_set_parent(struct k210_clk_priv *priv, int id, int new)
-{
- int i;
- const struct k210_mux_params *mux;
-
- if (!(k210_clks[id].flags & K210_CLKF_MUX))
- return -ENOSYS;
- mux = &k210_muxes[k210_clks[id].mux];
-
- for (i = 0; i < mux->num_parents; i++) {
- if (mux->parents[i] == new) {
- k210_clk_writel(priv, mux->off, mux->shift, mux->width,
- i);
- return 0;
- }
- }
- return -EINVAL;
-}
-
-static int k210_clk_set_parent(struct clk *clk, struct clk *parent)
-{
- return do_k210_clk_set_parent(dev_get_priv(clk->dev), clk->id,
- parent->id);
-}
-
-static ulong k210_clk_set_rate(struct clk *clk, unsigned long rate)
-{
- int parent, ret, err;
- ulong rate_in, val;
- const struct k210_div_params *div;
- struct k210_clk_priv *priv = dev_get_priv(clk->dev);
-
- if (clk->id == K210_CLK_IN0)
- return clk_set_rate(&priv->in0, rate);
-
- parent = k210_clk_get_parent(priv, clk->id);
- rate_in = do_k210_clk_get_rate(priv, parent);
-
- log_debug("id=%ld rate=%lu rate_in=%lu\n", clk->id, rate, rate_in);
-
- if (clk->id == K210_CLK_PLL0) {
- /* Bypass ACLK so the CPU keeps going */
- ret = do_k210_clk_set_parent(priv, K210_CLK_ACLK, K210_CLK_IN0);
- if (ret)
- return ret;
- } else if (clk->id == K210_CLK_PLL1 && gd->flags & GD_FLG_RELOC) {
- /*
- * We can't bypass the AI clock like we can ACLK, and after
- * relocation we are using the AI ram.
- */
- return -EPERM;
- }
-
- if (k210_clks[clk->id].flags & K210_CLKF_PLL) {
- ret = k210_pll_set_rate(priv, k210_clks[clk->id].pll, rate,
- rate_in);
- if (!IS_ERR_VALUE(ret) && clk->id == K210_CLK_PLL0) {
- /*
- * This may have the side effect of reparenting ACLK,
- * but I don't really want to keep track of what the old
- * parent was.
- */
- err = do_k210_clk_set_parent(priv, K210_CLK_ACLK,
- K210_CLK_PLL0);
- if (err)
- return err;
- }
- return ret;
- }
-
- if (k210_clks[clk->id].div == K210_CLK_DIV_NONE)
- return -ENOSYS;
- div = &k210_divs[k210_clks[clk->id].div];
-
- switch (div->type) {
- case K210_DIV_ONE:
- val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
- val = val ? val - 1 : 0;
- break;
- case K210_DIV_EVEN:
- val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, 2 * rate);
- break;
- case K210_DIV_POWER:
- /* This is ACLK, which has no divider on IN0 */
- if (parent == K210_CLK_IN0)
- return -ENOSYS;
-
- val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
- val = __ffs(val);
- break;
- default:
- assert(false);
- return -EINVAL;
- };
-
- val = val ? val - 1 : 0;
- k210_clk_writel(priv, div->off, div->shift, div->width, val);
- return do_k210_clk_get_rate(priv, clk->id);
-}
-
-static int k210_clk_endisable(struct k210_clk_priv *priv, int id, bool enable)
-{
- int parent = k210_clk_get_parent(priv, id);
- const struct k210_gate_params *gate;
-
- if (id == K210_CLK_IN0) {
- if (enable)
- return clk_enable(&priv->in0);
- else
- return clk_disable(&priv->in0);
- }
-
- /* Only recursively enable clocks since we don't track refcounts */
- if (enable) {
- int ret = k210_clk_endisable(priv, parent, true);
-
- if (ret && ret != -ENOSYS)
- return ret;
- }
-
- if (k210_clks[id].flags & K210_CLKF_PLL) {
- if (enable)
- return k210_pll_enable(priv, k210_clks[id].pll);
- else
- return k210_pll_disable(priv, k210_clks[id].pll);
- }
-
- if (k210_clks[id].gate == K210_CLK_GATE_NONE)
- return -ENOSYS;
- gate = &k210_gates[k210_clks[id].gate];
-
- k210_clk_writel(priv, gate->off, gate->bit_idx, 1, enable);
- return 0;
-}
-
-static int k210_clk_enable(struct clk *clk)
-{
- return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, true);
-}
-
-static int k210_clk_disable(struct clk *clk)
-{
- return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, false);
-}
-
-static int k210_clk_request(struct clk *clk)
-{
- if (clk->id >= ARRAY_SIZE(k210_clks))
- return -EINVAL;
- return 0;
-}
-
-static const struct clk_ops k210_clk_ops = {
- .request = k210_clk_request,
- .set_rate = k210_clk_set_rate,
- .get_rate = k210_clk_get_rate,
- .set_parent = k210_clk_set_parent,
- .enable = k210_clk_enable,
- .disable = k210_clk_disable,
-};
-
-static int k210_clk_probe(struct udevice *dev)
-{
- int ret;
- struct k210_clk_priv *priv = dev_get_priv(dev);
-
- priv->base = dev_read_addr_ptr(dev_get_parent(dev));
- if (!priv->base)
- return -EINVAL;
-
- ret = clk_get_by_index(dev, 0, &priv->in0);
- if (ret)
- return ret;
-
- /*
- * Force setting defaults, even before relocation. This is so we can
- * set the clock rate for PLL1 before we relocate into aisram.
- */
- if (!(gd->flags & GD_FLG_RELOC))
- clk_set_defaults(dev, CLK_DEFAULTS_POST_FORCE);
-
- return 0;
-}
-
-static const struct udevice_id k210_clk_ids[] = {
- { .compatible = "kendryte,k210-clk" },
- { },
-};
-
-U_BOOT_DRIVER(k210_clk) = {
- .name = "k210_clk",
- .id = UCLASS_CLK,
- .of_match = k210_clk_ids,
- .ops = &k210_clk_ops,
- .probe = k210_clk_probe,
- .priv_auto = sizeof(struct k210_clk_priv),
-};
-
-#if CONFIG_IS_ENABLED(CMD_CLK)
-static char show_enabled(struct k210_clk_priv *priv, int id)
-{
- bool enabled;
-
- if (k210_clks[id].flags & K210_CLKF_PLL) {
- const struct k210_pll_params *pll =
- &k210_plls[k210_clks[id].pll];
-
- enabled = k210_pll_enabled(readl(priv->base + pll->off));
- } else if (k210_clks[id].gate == K210_CLK_GATE_NONE) {
- return '-';
- } else {
- const struct k210_gate_params *gate =
- &k210_gates[k210_clks[id].gate];
-
- enabled = k210_clk_readl(priv, gate->off, gate->bit_idx, 1);
- }
-
- return enabled ? 'y' : 'n';
-}
-
-static void show_clks(struct k210_clk_priv *priv, int id, int depth)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(k210_clks); i++) {
- if (k210_clk_get_parent(priv, i) != id)
- continue;
-
- printf(" %-9lu %-7c %*s%s\n", do_k210_clk_get_rate(priv, i),
- show_enabled(priv, i), depth * 4, "",
- k210_clks[i].name);
-
- show_clks(priv, i, depth + 1);
- }
-}
-
-int soc_clk_dump(void)
-{
- int ret;
- struct udevice *dev;
- struct k210_clk_priv *priv;
-
- ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(k210_clk),
- &dev);
- if (ret)
- return ret;
- priv = dev_get_priv(dev);
-
- puts(" Rate Enabled Name\n");
- puts("------------------------\n");
- printf(" %-9lu %-7c %*s%s\n", clk_get_rate(&priv->in0), 'y', 0, "",
- priv->in0.dev->name);
- show_clks(priv, K210_CLK_IN0, 1);
- return 0;
-}
-#endif