struct list_head task_iters;
/*
- * On the default hierarhcy, ->subsys[ssid] may point to a css
+ * On the default hierarchy, ->subsys[ssid] may point to a css
* attached to an ancestor instead of the cgroup this css_set is
* associated with. The following node is anchored at
* ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
*/
bool threaded:1;
- /* the following two fields are initialized automtically during boot */
+ /* the following two fields are initialized automatically during boot */
int id;
const char *name;
* sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
* On boot, sock_cgroup_data records the cgroup that the sock was created
* in so that cgroup2 matches can be made; however, once either net_prio or
- * net_cls starts being used, the area is overriden to carry prioidx and/or
+ * net_cls starts being used, the area is overridden to carry prioidx and/or
* classid. The two modes are distinguished by whether the lowest bit is
* set. Clear bit indicates cgroup pointer while set bit prioidx and
* classid.
#ifdef CONFIG_CGROUPS
/*
- * All weight knobs on the default hierarhcy should use the following min,
+ * All weight knobs on the default hierarchy should use the following min,
* default and max values. The default value is the logarithmic center of
* MIN and MAX and allows 100x to be expressed in both directions.
*/
ctx->subsys_mask &= enabled;
/*
- * In absense of 'none', 'name=' or subsystem name options,
+ * In absence of 'none', 'name=' and subsystem name options,
* let's default to 'all'.
*/
if (!ctx->subsys_mask && !ctx->none && !ctx->name)
* @cgrp: the cgroup of interest
* @ss: the subsystem of interest
*
- * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
+ * Find and get @cgrp's css associated with @ss. If the css doesn't exist
* or is offline, %NULL is returned.
*/
static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
/**
* css_clear_dir - remove subsys files in a cgroup directory
- * @css: taget css
+ * @css: target css
*/
static void css_clear_dir(struct cgroup_subsys_state *css)
{
/*
* This is called when the refcnt of a css is confirmed to be killed.
* css_tryget_online() is now guaranteed to fail. Tell the subsystem to
- * initate destruction and put the css ref from kill_css().
+ * initiate destruction and put the css ref from kill_css().
*/
static void css_killed_work_fn(struct work_struct *work)
{
* @kargs: the arguments passed to create the child process
*
* This calls the cancel_fork() callbacks if a fork failed *after*
- * cgroup_can_fork() succeded and cleans up references we took to
+ * cgroup_can_fork() succeeded and cleans up references we took to
* prepare a new css_set for the child process in cgroup_can_fork().
*/
void cgroup_cancel_fork(struct task_struct *child,
}
/**
- * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
+ * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
* @nodemask: the nodemask to be checked
*
* Are any of the nodes in the nodemask allowed in current->mems_allowed?
* This function follows charging resource in hierarchical way.
* It will fail if the charge would cause the new value to exceed the
* hierarchical limit.
- * Returns 0 if the charge succeded, otherwise -EAGAIN, -ENOMEM or -EINVAL.
+ * Returns 0 if the charge succeeded, otherwise -EAGAIN, -ENOMEM or -EINVAL.
* Returns pointer to rdmacg for this resource when charging is successful.
*
* Charger needs to account resources on two criteria.
* @root: root of the tree to traversal
* @cpu: target cpu
*
- * Walks the udpated rstat_cpu tree on @cpu from @root. %NULL @pos starts
+ * Walks the updated rstat_cpu tree on @cpu from @root. %NULL @pos starts
* the traversal and %NULL return indicates the end. During traversal,
* each returned cgroup is unlinked from the tree. Must be called with the
* matching cgroup_rstat_cpu_lock held.