]> git.baikalelectronics.ru Git - kernel.git/commitdiff
drm/i915/icl: Add Multi-segmented gamma support
authorShashank Sharma <shashank.sharma@intel.com>
Wed, 12 Jun 2019 06:45:00 +0000 (12:15 +0530)
committerMaarten Lankhorst <maarten.lankhorst@linux.intel.com>
Mon, 17 Jun 2019 08:26:48 +0000 (10:26 +0200)
ICL introduces a new gamma correction mode in display engine, called
multi-segmented-gamma mode. This mode allows users to program the
darker region of the gamma curve with sueprfine precision. An
example use case for this is HDR curves (like PQ ST-2084).

If we plot a gamma correction curve from value range between 0.0 to 1.0,
ICL's multi-segment has 3 different sections:
- superfine segment: 9 values, ranges between 0 - 1/(128 * 256)
- fine segment: 257 values, ranges between 0 - 1/(128)
- corase segment: 257 values, ranges between 0 - 1

This patch:
- Changes gamma LUTs size for ICL/GEN11 to 262144 entries (8 * 128 * 256),
  so that userspace can program with highest precision supported.
- Changes default gamma mode (non-legacy) to multi-segmented-gamma mode.
- Adds functions to program/detect multi-segment gamma.

V2: Addressed review comments from Ville
    - separate function for superfine and fine segments.
    - remove enum for segments.
    - reuse last entry of the LUT as gc_max value.
    - replace if() ....cond with switch...case in icl_load_luts.
    - add an entry variable, instead of 'word'

V3: Addressed review comments from Ville
    - extra newline
    - s/entry/color/
    - remove LUT size checks
    - program ilk_lut_12p4_ldw value before ilk_lut_12p4_udw
    - Change the comments in description of fine and coarse segments,
      and try to make more sense.
    - use 8 * 128 instead of 1024
    - add 1 entry in LUT for GCMAX

V4: Addressed review comments from Ville
    - Remove unused macro
    - missing shift entry in blue
    - pick correct entry for GCMAX
    - Added Ville's R-B
Note: Tested and confirmed the programming sequence of odd/even
registers in the HW. The correct sequence should be:
ilk_lut_12p4_udw
ilk_lut_12p4_ldw

v5: Addressed Ville's review comments and renamed odd/even register
helpers to be more consistent with the values.

Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Suggested-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Shashank Sharma <shashank.sharma@intel.com>
Signed-off-by: Uma Shankar <uma.shankar@intel.com>
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/1560321900-18318-5-git-send-email-uma.shankar@intel.com
drivers/gpu/drm/i915/i915_pci.c
drivers/gpu/drm/i915/intel_color.c

index 482f1d0f1770226b123582b0df0b48aaebb83983..ed6b1f6402c40e3dfe3f7d4881c9fcf3895cadc9 100644 (file)
@@ -747,7 +747,7 @@ static const struct intel_device_info intel_cannonlake_info = {
        GEN(11), \
        .ddb_size = 2048, \
        .has_logical_ring_elsq = 1, \
-       .color = { .degamma_lut_size = 33, .gamma_lut_size = 1024 }
+       .color = { .degamma_lut_size = 33, .gamma_lut_size = 262145 }
 
 static const struct intel_device_info intel_icelake_11_info = {
        GEN11_FEATURES,
index 46443ae06bf58a1cf752d8b2b00ba95271a233ea..23a84dd7989fb1986219dcf70202db16b2322ac2 100644 (file)
@@ -41,6 +41,7 @@
 #define CTM_COEFF_ABS(coeff)           ((coeff) & (CTM_COEFF_SIGN - 1))
 
 #define LEGACY_LUT_LENGTH              256
+
 /*
  * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
  * format). This macro takes the coefficient we want transformed and the
@@ -767,6 +768,116 @@ static void glk_load_luts(const struct intel_crtc_state *crtc_state)
        }
 }
 
+/* ilk+ "12.4" interpolated format (high 10 bits) */
+static u32 ilk_lut_12p4_udw(const struct drm_color_lut *color)
+{
+       return (color->red >> 6) << 20 | (color->green >> 6) << 10 |
+               (color->blue >> 6);
+}
+
+/* ilk+ "12.4" interpolated format (low 6 bits) */
+static u32 ilk_lut_12p4_ldw(const struct drm_color_lut *color)
+{
+       return (color->red & 0x3f) << 24 | (color->green & 0x3f) << 14 |
+               (color->blue & 0x3f) << 4;
+}
+
+static void
+icl_load_gcmax(const struct intel_crtc_state *crtc_state,
+              const struct drm_color_lut *color)
+{
+       struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
+       struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
+       enum pipe pipe = crtc->pipe;
+
+       /* Fixme: LUT entries are 16 bit only, so we can prog 0xFFFF max */
+       I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), color->red);
+       I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), color->green);
+       I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), color->blue);
+}
+
+static void
+icl_program_gamma_superfine_segment(const struct intel_crtc_state *crtc_state)
+{
+       struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
+       struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
+       const struct drm_property_blob *blob = crtc_state->base.gamma_lut;
+       const struct drm_color_lut *lut = blob->data;
+       enum pipe pipe = crtc->pipe;
+       u32 i;
+
+       /*
+        * Every entry in the multi-segment LUT is corresponding to a superfine
+        * segment step which is 1/(8 * 128 * 256).
+        *
+        * Superfine segment has 9 entries, corresponding to values
+        * 0, 1/(8 * 128 * 256), 2/(8 * 128 * 256) .... 8/(8 * 128 * 256).
+        */
+       I915_WRITE(PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_AUTO_INCREMENT);
+
+       for (i = 0; i < 9; i++) {
+               const struct drm_color_lut *entry = &lut[i];
+
+               I915_WRITE(PREC_PAL_MULTI_SEG_DATA(pipe),
+                          ilk_lut_12p4_ldw(entry));
+               I915_WRITE(PREC_PAL_MULTI_SEG_DATA(pipe),
+                          ilk_lut_12p4_udw(entry));
+       }
+}
+
+static void
+icl_program_gamma_multi_segment(const struct intel_crtc_state *crtc_state)
+{
+       struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
+       struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
+       const struct drm_property_blob *blob = crtc_state->base.gamma_lut;
+       const struct drm_color_lut *lut = blob->data;
+       const struct drm_color_lut *entry;
+       enum pipe pipe = crtc->pipe;
+       u32 i;
+
+       /*
+        *
+        * Program Fine segment (let's call it seg2)...
+        *
+        * Fine segment's step is 1/(128 * 256) ie 1/(128 * 256),  2/(128*256)
+        * ... 256/(128*256). So in order to program fine segment of LUT we
+        * need to pick every 8'th entry in LUT, and program 256 indexes.
+        *
+        * PAL_PREC_INDEX[0] and PAL_PREC_INDEX[1] map to seg2[1],
+        * with seg2[0] being unused by the hardware.
+        */
+       I915_WRITE(PREC_PAL_INDEX(pipe), PAL_PREC_AUTO_INCREMENT);
+       for (i = 1; i < 257; i++) {
+               entry = &lut[i * 8];
+               I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry));
+               I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry));
+       }
+
+       /*
+        * Program Coarse segment (let's call it seg3)...
+        *
+        * Coarse segment's starts from index 0 and it's step is 1/256 ie 0,
+        * 1/256, 2/256 ...256/256. As per the description of each entry in LUT
+        * above, we need to pick every (8 * 128)th entry in LUT, and
+        * program 256 of those.
+        *
+        * Spec is not very clear about if entries seg3[0] and seg3[1] are
+        * being used or not, but we still need to program these to advance
+        * the index.
+        */
+       for (i = 0; i < 256; i++) {
+               entry = &lut[i * 8 * 128];
+               I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry));
+               I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry));
+       }
+
+       /* The last entry in the LUT is to be programmed in GCMAX */
+       entry = &lut[256 * 8 * 128];
+       icl_load_gcmax(crtc_state, entry);
+       ivb_load_lut_ext_max(crtc);
+}
+
 static void icl_load_luts(const struct intel_crtc_state *crtc_state)
 {
        const struct drm_property_blob *gamma_lut = crtc_state->base.gamma_lut;
@@ -775,10 +886,17 @@ static void icl_load_luts(const struct intel_crtc_state *crtc_state)
        if (crtc_state->base.degamma_lut)
                glk_load_degamma_lut(crtc_state);
 
-       if ((crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) ==
-           GAMMA_MODE_MODE_8BIT) {
+       switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
+       case GAMMA_MODE_MODE_8BIT:
                i9xx_load_luts(crtc_state);
-       } else {
+               break;
+
+       case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
+               icl_program_gamma_superfine_segment(crtc_state);
+               icl_program_gamma_multi_segment(crtc_state);
+               break;
+
+       default:
                bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0));
                ivb_load_lut_ext_max(crtc);
        }
@@ -1219,7 +1337,7 @@ static u32 icl_gamma_mode(const struct intel_crtc_state *crtc_state)
            crtc_state_is_legacy_gamma(crtc_state))
                gamma_mode |= GAMMA_MODE_MODE_8BIT;
        else
-               gamma_mode |= GAMMA_MODE_MODE_10BIT;
+               gamma_mode |= GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED;
 
        return gamma_mode;
 }