The conversion of alpha to memblock as the early memory manager caused
boot to hang as described at [1].
The issue is caused because for CONFIG_DISCTONTIGMEM=y case,
memblock_add() is called using memory start PFN that had been rounded
down to the nearest 8Mb and it caused memblock to see more memory that
is actually present in the system.
Besides, memblock allocates memory from high addresses while bootmem was
using low memory, which broke the assumption that early allocations are
always accessible by the hardware.
This patch ensures that memblock_add() is using the correct PFN for the
memory start and forces memblock to use bottom-up allocations.
[1] https://lkml.org/lkml/2018/11/22/1032
Link: http://lkml.kernel.org/r/1543233216-25833-1-git-send-email-rppt@linux.ibm.com
Reported-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Meelis Roos <mroos@linux.ee>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/* Find our memory. */
setup_memory(kernel_end);
+ memblock_set_bottom_up(true);
/* First guess at cpu cache sizes. Do this before init_arch. */
determine_cpu_caches(cpu->type);
if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
panic("kernel loaded out of ram");
+ memblock_add(PFN_PHYS(node_min_pfn),
+ (node_max_pfn - node_min_pfn) << PAGE_SHIFT);
+
/* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
Note that we round this down, not up - node memory
has much larger alignment than 8Mb, so it's safe. */
node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
- memblock_add(PFN_PHYS(node_min_pfn),
- (node_max_pfn - node_min_pfn) << PAGE_SHIFT);
-
NODE_DATA(nid)->node_start_pfn = node_min_pfn;
NODE_DATA(nid)->node_present_pages = node_max_pfn - node_min_pfn;