bpf: Fix kernel address leakage in atomic fetch
The change in commit
f33f93ce3900 ("bpf: Propagate stack bounds to registers
in atomics w/ BPF_FETCH") around check_mem_access() handling is buggy since
this would allow for unprivileged users to leak kernel pointers. For example,
an atomic fetch/and with -1 on a stack destination which holds a spilled
pointer will migrate the spilled register type into a scalar, which can then
be exported out of the program (since scalar != pointer) by dumping it into
a map value.
The original implementation of XADD was preventing this situation by using
a double call to check_mem_access() one with BPF_READ and a subsequent one
with BPF_WRITE, in both cases passing -1 as a placeholder value instead of
register as per XADD semantics since it didn't contain a value fetch. The
BPF_READ also included a check in check_stack_read_fixed_off() which rejects
the program if the stack slot is of __is_pointer_value() if dst_regno < 0.
The latter is to distinguish whether we're dealing with a regular stack spill/
fill or some arithmetical operation which is disallowed on non-scalars, see
also
071755280b8a ("bpf: Forbid XADD on spilled pointers for unprivileged
users") for more context on check_mem_access() and its handling of placeholder
value -1.
One minimally intrusive option to fix the leak is for the BPF_FETCH case to
initially check the BPF_READ case via check_mem_access() with -1 as register,
followed by the actual load case with non-negative load_reg to propagate
stack bounds to registers.
Fixes: f33f93ce3900 ("bpf: Propagate stack bounds to registers in atomics w/ BPF_FETCH")
Reported-by: <n4ke4mry@gmail.com>
Acked-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>