crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```