]> git.baikalelectronics.ru Git - kernel.git/blob - mm/khugepaged.c
mm/khugepaged: fix ->anon_vma race
[kernel.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 #include "mm_slot.h"
27
28 enum scan_result {
29         SCAN_FAIL,
30         SCAN_SUCCEED,
31         SCAN_PMD_NULL,
32         SCAN_PMD_NONE,
33         SCAN_PMD_MAPPED,
34         SCAN_EXCEED_NONE_PTE,
35         SCAN_EXCEED_SWAP_PTE,
36         SCAN_EXCEED_SHARED_PTE,
37         SCAN_PTE_NON_PRESENT,
38         SCAN_PTE_UFFD_WP,
39         SCAN_PTE_MAPPED_HUGEPAGE,
40         SCAN_PAGE_RO,
41         SCAN_LACK_REFERENCED_PAGE,
42         SCAN_PAGE_NULL,
43         SCAN_SCAN_ABORT,
44         SCAN_PAGE_COUNT,
45         SCAN_PAGE_LRU,
46         SCAN_PAGE_LOCK,
47         SCAN_PAGE_ANON,
48         SCAN_PAGE_COMPOUND,
49         SCAN_ANY_PROCESS,
50         SCAN_VMA_NULL,
51         SCAN_VMA_CHECK,
52         SCAN_ADDRESS_RANGE,
53         SCAN_DEL_PAGE_LRU,
54         SCAN_ALLOC_HUGE_PAGE_FAIL,
55         SCAN_CGROUP_CHARGE_FAIL,
56         SCAN_TRUNCATED,
57         SCAN_PAGE_HAS_PRIVATE,
58 };
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/huge_memory.h>
62
63 static struct task_struct *khugepaged_thread __read_mostly;
64 static DEFINE_MUTEX(khugepaged_mutex);
65
66 /* default scan 8*512 pte (or vmas) every 30 second */
67 static unsigned int khugepaged_pages_to_scan __read_mostly;
68 static unsigned int khugepaged_pages_collapsed;
69 static unsigned int khugepaged_full_scans;
70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
71 /* during fragmentation poll the hugepage allocator once every minute */
72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
73 static unsigned long khugepaged_sleep_expire;
74 static DEFINE_SPINLOCK(khugepaged_mm_lock);
75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
76 /*
77  * default collapse hugepages if there is at least one pte mapped like
78  * it would have happened if the vma was large enough during page
79  * fault.
80  *
81  * Note that these are only respected if collapse was initiated by khugepaged.
82  */
83 static unsigned int khugepaged_max_ptes_none __read_mostly;
84 static unsigned int khugepaged_max_ptes_swap __read_mostly;
85 static unsigned int khugepaged_max_ptes_shared __read_mostly;
86
87 #define MM_SLOTS_HASH_BITS 10
88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
89
90 static struct kmem_cache *mm_slot_cache __read_mostly;
91
92 #define MAX_PTE_MAPPED_THP 8
93
94 struct collapse_control {
95         bool is_khugepaged;
96
97         /* Num pages scanned per node */
98         u32 node_load[MAX_NUMNODES];
99
100         /* nodemask for allocation fallback */
101         nodemask_t alloc_nmask;
102 };
103
104 /**
105  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
106  * @slot: hash lookup from mm to mm_slot
107  * @nr_pte_mapped_thp: number of pte mapped THP
108  * @pte_mapped_thp: address array corresponding pte mapped THP
109  */
110 struct khugepaged_mm_slot {
111         struct mm_slot slot;
112
113         /* pte-mapped THP in this mm */
114         int nr_pte_mapped_thp;
115         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
116 };
117
118 /**
119  * struct khugepaged_scan - cursor for scanning
120  * @mm_head: the head of the mm list to scan
121  * @mm_slot: the current mm_slot we are scanning
122  * @address: the next address inside that to be scanned
123  *
124  * There is only the one khugepaged_scan instance of this cursor structure.
125  */
126 struct khugepaged_scan {
127         struct list_head mm_head;
128         struct khugepaged_mm_slot *mm_slot;
129         unsigned long address;
130 };
131
132 static struct khugepaged_scan khugepaged_scan = {
133         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134 };
135
136 #ifdef CONFIG_SYSFS
137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
138                                          struct kobj_attribute *attr,
139                                          char *buf)
140 {
141         return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
142 }
143
144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
145                                           struct kobj_attribute *attr,
146                                           const char *buf, size_t count)
147 {
148         unsigned int msecs;
149         int err;
150
151         err = kstrtouint(buf, 10, &msecs);
152         if (err)
153                 return -EINVAL;
154
155         khugepaged_scan_sleep_millisecs = msecs;
156         khugepaged_sleep_expire = 0;
157         wake_up_interruptible(&khugepaged_wait);
158
159         return count;
160 }
161 static struct kobj_attribute scan_sleep_millisecs_attr =
162         __ATTR_RW(scan_sleep_millisecs);
163
164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
165                                           struct kobj_attribute *attr,
166                                           char *buf)
167 {
168         return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
169 }
170
171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
172                                            struct kobj_attribute *attr,
173                                            const char *buf, size_t count)
174 {
175         unsigned int msecs;
176         int err;
177
178         err = kstrtouint(buf, 10, &msecs);
179         if (err)
180                 return -EINVAL;
181
182         khugepaged_alloc_sleep_millisecs = msecs;
183         khugepaged_sleep_expire = 0;
184         wake_up_interruptible(&khugepaged_wait);
185
186         return count;
187 }
188 static struct kobj_attribute alloc_sleep_millisecs_attr =
189         __ATTR_RW(alloc_sleep_millisecs);
190
191 static ssize_t pages_to_scan_show(struct kobject *kobj,
192                                   struct kobj_attribute *attr,
193                                   char *buf)
194 {
195         return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
196 }
197 static ssize_t pages_to_scan_store(struct kobject *kobj,
198                                    struct kobj_attribute *attr,
199                                    const char *buf, size_t count)
200 {
201         unsigned int pages;
202         int err;
203
204         err = kstrtouint(buf, 10, &pages);
205         if (err || !pages)
206                 return -EINVAL;
207
208         khugepaged_pages_to_scan = pages;
209
210         return count;
211 }
212 static struct kobj_attribute pages_to_scan_attr =
213         __ATTR_RW(pages_to_scan);
214
215 static ssize_t pages_collapsed_show(struct kobject *kobj,
216                                     struct kobj_attribute *attr,
217                                     char *buf)
218 {
219         return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
220 }
221 static struct kobj_attribute pages_collapsed_attr =
222         __ATTR_RO(pages_collapsed);
223
224 static ssize_t full_scans_show(struct kobject *kobj,
225                                struct kobj_attribute *attr,
226                                char *buf)
227 {
228         return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
229 }
230 static struct kobj_attribute full_scans_attr =
231         __ATTR_RO(full_scans);
232
233 static ssize_t defrag_show(struct kobject *kobj,
234                            struct kobj_attribute *attr, char *buf)
235 {
236         return single_hugepage_flag_show(kobj, attr, buf,
237                                          TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
238 }
239 static ssize_t defrag_store(struct kobject *kobj,
240                             struct kobj_attribute *attr,
241                             const char *buf, size_t count)
242 {
243         return single_hugepage_flag_store(kobj, attr, buf, count,
244                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
245 }
246 static struct kobj_attribute khugepaged_defrag_attr =
247         __ATTR_RW(defrag);
248
249 /*
250  * max_ptes_none controls if khugepaged should collapse hugepages over
251  * any unmapped ptes in turn potentially increasing the memory
252  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
253  * reduce the available free memory in the system as it
254  * runs. Increasing max_ptes_none will instead potentially reduce the
255  * free memory in the system during the khugepaged scan.
256  */
257 static ssize_t max_ptes_none_show(struct kobject *kobj,
258                                   struct kobj_attribute *attr,
259                                   char *buf)
260 {
261         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
262 }
263 static ssize_t max_ptes_none_store(struct kobject *kobj,
264                                    struct kobj_attribute *attr,
265                                    const char *buf, size_t count)
266 {
267         int err;
268         unsigned long max_ptes_none;
269
270         err = kstrtoul(buf, 10, &max_ptes_none);
271         if (err || max_ptes_none > HPAGE_PMD_NR - 1)
272                 return -EINVAL;
273
274         khugepaged_max_ptes_none = max_ptes_none;
275
276         return count;
277 }
278 static struct kobj_attribute khugepaged_max_ptes_none_attr =
279         __ATTR_RW(max_ptes_none);
280
281 static ssize_t max_ptes_swap_show(struct kobject *kobj,
282                                   struct kobj_attribute *attr,
283                                   char *buf)
284 {
285         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
286 }
287
288 static ssize_t max_ptes_swap_store(struct kobject *kobj,
289                                    struct kobj_attribute *attr,
290                                    const char *buf, size_t count)
291 {
292         int err;
293         unsigned long max_ptes_swap;
294
295         err  = kstrtoul(buf, 10, &max_ptes_swap);
296         if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
297                 return -EINVAL;
298
299         khugepaged_max_ptes_swap = max_ptes_swap;
300
301         return count;
302 }
303
304 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
305         __ATTR_RW(max_ptes_swap);
306
307 static ssize_t max_ptes_shared_show(struct kobject *kobj,
308                                     struct kobj_attribute *attr,
309                                     char *buf)
310 {
311         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
312 }
313
314 static ssize_t max_ptes_shared_store(struct kobject *kobj,
315                                      struct kobj_attribute *attr,
316                                      const char *buf, size_t count)
317 {
318         int err;
319         unsigned long max_ptes_shared;
320
321         err  = kstrtoul(buf, 10, &max_ptes_shared);
322         if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
323                 return -EINVAL;
324
325         khugepaged_max_ptes_shared = max_ptes_shared;
326
327         return count;
328 }
329
330 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
331         __ATTR_RW(max_ptes_shared);
332
333 static struct attribute *khugepaged_attr[] = {
334         &khugepaged_defrag_attr.attr,
335         &khugepaged_max_ptes_none_attr.attr,
336         &khugepaged_max_ptes_swap_attr.attr,
337         &khugepaged_max_ptes_shared_attr.attr,
338         &pages_to_scan_attr.attr,
339         &pages_collapsed_attr.attr,
340         &full_scans_attr.attr,
341         &scan_sleep_millisecs_attr.attr,
342         &alloc_sleep_millisecs_attr.attr,
343         NULL,
344 };
345
346 struct attribute_group khugepaged_attr_group = {
347         .attrs = khugepaged_attr,
348         .name = "khugepaged",
349 };
350 #endif /* CONFIG_SYSFS */
351
352 int hugepage_madvise(struct vm_area_struct *vma,
353                      unsigned long *vm_flags, int advice)
354 {
355         switch (advice) {
356         case MADV_HUGEPAGE:
357 #ifdef CONFIG_S390
358                 /*
359                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
360                  * can't handle this properly after s390_enable_sie, so we simply
361                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
362                  */
363                 if (mm_has_pgste(vma->vm_mm))
364                         return 0;
365 #endif
366                 *vm_flags &= ~VM_NOHUGEPAGE;
367                 *vm_flags |= VM_HUGEPAGE;
368                 /*
369                  * If the vma become good for khugepaged to scan,
370                  * register it here without waiting a page fault that
371                  * may not happen any time soon.
372                  */
373                 khugepaged_enter_vma(vma, *vm_flags);
374                 break;
375         case MADV_NOHUGEPAGE:
376                 *vm_flags &= ~VM_HUGEPAGE;
377                 *vm_flags |= VM_NOHUGEPAGE;
378                 /*
379                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
380                  * this vma even if we leave the mm registered in khugepaged if
381                  * it got registered before VM_NOHUGEPAGE was set.
382                  */
383                 break;
384         }
385
386         return 0;
387 }
388
389 int __init khugepaged_init(void)
390 {
391         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
392                                           sizeof(struct khugepaged_mm_slot),
393                                           __alignof__(struct khugepaged_mm_slot),
394                                           0, NULL);
395         if (!mm_slot_cache)
396                 return -ENOMEM;
397
398         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
399         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
400         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
401         khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
402
403         return 0;
404 }
405
406 void __init khugepaged_destroy(void)
407 {
408         kmem_cache_destroy(mm_slot_cache);
409 }
410
411 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
412 {
413         return atomic_read(&mm->mm_users) == 0;
414 }
415
416 void __khugepaged_enter(struct mm_struct *mm)
417 {
418         struct khugepaged_mm_slot *mm_slot;
419         struct mm_slot *slot;
420         int wakeup;
421
422         mm_slot = mm_slot_alloc(mm_slot_cache);
423         if (!mm_slot)
424                 return;
425
426         slot = &mm_slot->slot;
427
428         /* __khugepaged_exit() must not run from under us */
429         VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
430         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
431                 mm_slot_free(mm_slot_cache, mm_slot);
432                 return;
433         }
434
435         spin_lock(&khugepaged_mm_lock);
436         mm_slot_insert(mm_slots_hash, mm, slot);
437         /*
438          * Insert just behind the scanning cursor, to let the area settle
439          * down a little.
440          */
441         wakeup = list_empty(&khugepaged_scan.mm_head);
442         list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
443         spin_unlock(&khugepaged_mm_lock);
444
445         mmgrab(mm);
446         if (wakeup)
447                 wake_up_interruptible(&khugepaged_wait);
448 }
449
450 void khugepaged_enter_vma(struct vm_area_struct *vma,
451                           unsigned long vm_flags)
452 {
453         if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
454             hugepage_flags_enabled()) {
455                 if (hugepage_vma_check(vma, vm_flags, false, false, true))
456                         __khugepaged_enter(vma->vm_mm);
457         }
458 }
459
460 void __khugepaged_exit(struct mm_struct *mm)
461 {
462         struct khugepaged_mm_slot *mm_slot;
463         struct mm_slot *slot;
464         int free = 0;
465
466         spin_lock(&khugepaged_mm_lock);
467         slot = mm_slot_lookup(mm_slots_hash, mm);
468         mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
469         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
470                 hash_del(&slot->hash);
471                 list_del(&slot->mm_node);
472                 free = 1;
473         }
474         spin_unlock(&khugepaged_mm_lock);
475
476         if (free) {
477                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
478                 mm_slot_free(mm_slot_cache, mm_slot);
479                 mmdrop(mm);
480         } else if (mm_slot) {
481                 /*
482                  * This is required to serialize against
483                  * hpage_collapse_test_exit() (which is guaranteed to run
484                  * under mmap sem read mode). Stop here (after we return all
485                  * pagetables will be destroyed) until khugepaged has finished
486                  * working on the pagetables under the mmap_lock.
487                  */
488                 mmap_write_lock(mm);
489                 mmap_write_unlock(mm);
490         }
491 }
492
493 static void release_pte_page(struct page *page)
494 {
495         mod_node_page_state(page_pgdat(page),
496                         NR_ISOLATED_ANON + page_is_file_lru(page),
497                         -compound_nr(page));
498         unlock_page(page);
499         putback_lru_page(page);
500 }
501
502 static void release_pte_pages(pte_t *pte, pte_t *_pte,
503                 struct list_head *compound_pagelist)
504 {
505         struct page *page, *tmp;
506
507         while (--_pte >= pte) {
508                 pte_t pteval = *_pte;
509
510                 page = pte_page(pteval);
511                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
512                                 !PageCompound(page))
513                         release_pte_page(page);
514         }
515
516         list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
517                 list_del(&page->lru);
518                 release_pte_page(page);
519         }
520 }
521
522 static bool is_refcount_suitable(struct page *page)
523 {
524         int expected_refcount;
525
526         expected_refcount = total_mapcount(page);
527         if (PageSwapCache(page))
528                 expected_refcount += compound_nr(page);
529
530         return page_count(page) == expected_refcount;
531 }
532
533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
534                                         unsigned long address,
535                                         pte_t *pte,
536                                         struct collapse_control *cc,
537                                         struct list_head *compound_pagelist)
538 {
539         struct page *page = NULL;
540         pte_t *_pte;
541         int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
542         bool writable = false;
543
544         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
545              _pte++, address += PAGE_SIZE) {
546                 pte_t pteval = *_pte;
547                 if (pte_none(pteval) || (pte_present(pteval) &&
548                                 is_zero_pfn(pte_pfn(pteval)))) {
549                         ++none_or_zero;
550                         if (!userfaultfd_armed(vma) &&
551                             (!cc->is_khugepaged ||
552                              none_or_zero <= khugepaged_max_ptes_none)) {
553                                 continue;
554                         } else {
555                                 result = SCAN_EXCEED_NONE_PTE;
556                                 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
557                                 goto out;
558                         }
559                 }
560                 if (!pte_present(pteval)) {
561                         result = SCAN_PTE_NON_PRESENT;
562                         goto out;
563                 }
564                 page = vm_normal_page(vma, address, pteval);
565                 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
566                         result = SCAN_PAGE_NULL;
567                         goto out;
568                 }
569
570                 VM_BUG_ON_PAGE(!PageAnon(page), page);
571
572                 if (page_mapcount(page) > 1) {
573                         ++shared;
574                         if (cc->is_khugepaged &&
575                             shared > khugepaged_max_ptes_shared) {
576                                 result = SCAN_EXCEED_SHARED_PTE;
577                                 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
578                                 goto out;
579                         }
580                 }
581
582                 if (PageCompound(page)) {
583                         struct page *p;
584                         page = compound_head(page);
585
586                         /*
587                          * Check if we have dealt with the compound page
588                          * already
589                          */
590                         list_for_each_entry(p, compound_pagelist, lru) {
591                                 if (page == p)
592                                         goto next;
593                         }
594                 }
595
596                 /*
597                  * We can do it before isolate_lru_page because the
598                  * page can't be freed from under us. NOTE: PG_lock
599                  * is needed to serialize against split_huge_page
600                  * when invoked from the VM.
601                  */
602                 if (!trylock_page(page)) {
603                         result = SCAN_PAGE_LOCK;
604                         goto out;
605                 }
606
607                 /*
608                  * Check if the page has any GUP (or other external) pins.
609                  *
610                  * The page table that maps the page has been already unlinked
611                  * from the page table tree and this process cannot get
612                  * an additional pin on the page.
613                  *
614                  * New pins can come later if the page is shared across fork,
615                  * but not from this process. The other process cannot write to
616                  * the page, only trigger CoW.
617                  */
618                 if (!is_refcount_suitable(page)) {
619                         unlock_page(page);
620                         result = SCAN_PAGE_COUNT;
621                         goto out;
622                 }
623
624                 /*
625                  * Isolate the page to avoid collapsing an hugepage
626                  * currently in use by the VM.
627                  */
628                 if (isolate_lru_page(page)) {
629                         unlock_page(page);
630                         result = SCAN_DEL_PAGE_LRU;
631                         goto out;
632                 }
633                 mod_node_page_state(page_pgdat(page),
634                                 NR_ISOLATED_ANON + page_is_file_lru(page),
635                                 compound_nr(page));
636                 VM_BUG_ON_PAGE(!PageLocked(page), page);
637                 VM_BUG_ON_PAGE(PageLRU(page), page);
638
639                 if (PageCompound(page))
640                         list_add_tail(&page->lru, compound_pagelist);
641 next:
642                 /*
643                  * If collapse was initiated by khugepaged, check that there is
644                  * enough young pte to justify collapsing the page
645                  */
646                 if (cc->is_khugepaged &&
647                     (pte_young(pteval) || page_is_young(page) ||
648                      PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
649                                                                      address)))
650                         referenced++;
651
652                 if (pte_write(pteval))
653                         writable = true;
654         }
655
656         if (unlikely(!writable)) {
657                 result = SCAN_PAGE_RO;
658         } else if (unlikely(cc->is_khugepaged && !referenced)) {
659                 result = SCAN_LACK_REFERENCED_PAGE;
660         } else {
661                 result = SCAN_SUCCEED;
662                 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
663                                                     referenced, writable, result);
664                 return result;
665         }
666 out:
667         release_pte_pages(pte, _pte, compound_pagelist);
668         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
669                                             referenced, writable, result);
670         return result;
671 }
672
673 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
674                                       struct vm_area_struct *vma,
675                                       unsigned long address,
676                                       spinlock_t *ptl,
677                                       struct list_head *compound_pagelist)
678 {
679         struct page *src_page, *tmp;
680         pte_t *_pte;
681         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
682                                 _pte++, page++, address += PAGE_SIZE) {
683                 pte_t pteval = *_pte;
684
685                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
686                         clear_user_highpage(page, address);
687                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
688                         if (is_zero_pfn(pte_pfn(pteval))) {
689                                 /*
690                                  * ptl mostly unnecessary.
691                                  */
692                                 spin_lock(ptl);
693                                 ptep_clear(vma->vm_mm, address, _pte);
694                                 spin_unlock(ptl);
695                         }
696                 } else {
697                         src_page = pte_page(pteval);
698                         copy_user_highpage(page, src_page, address, vma);
699                         if (!PageCompound(src_page))
700                                 release_pte_page(src_page);
701                         /*
702                          * ptl mostly unnecessary, but preempt has to
703                          * be disabled to update the per-cpu stats
704                          * inside page_remove_rmap().
705                          */
706                         spin_lock(ptl);
707                         ptep_clear(vma->vm_mm, address, _pte);
708                         page_remove_rmap(src_page, vma, false);
709                         spin_unlock(ptl);
710                         free_page_and_swap_cache(src_page);
711                 }
712         }
713
714         list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
715                 list_del(&src_page->lru);
716                 mod_node_page_state(page_pgdat(src_page),
717                                     NR_ISOLATED_ANON + page_is_file_lru(src_page),
718                                     -compound_nr(src_page));
719                 unlock_page(src_page);
720                 free_swap_cache(src_page);
721                 putback_lru_page(src_page);
722         }
723 }
724
725 static void khugepaged_alloc_sleep(void)
726 {
727         DEFINE_WAIT(wait);
728
729         add_wait_queue(&khugepaged_wait, &wait);
730         __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
731         schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
732         remove_wait_queue(&khugepaged_wait, &wait);
733 }
734
735 struct collapse_control khugepaged_collapse_control = {
736         .is_khugepaged = true,
737 };
738
739 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
740 {
741         int i;
742
743         /*
744          * If node_reclaim_mode is disabled, then no extra effort is made to
745          * allocate memory locally.
746          */
747         if (!node_reclaim_enabled())
748                 return false;
749
750         /* If there is a count for this node already, it must be acceptable */
751         if (cc->node_load[nid])
752                 return false;
753
754         for (i = 0; i < MAX_NUMNODES; i++) {
755                 if (!cc->node_load[i])
756                         continue;
757                 if (node_distance(nid, i) > node_reclaim_distance)
758                         return true;
759         }
760         return false;
761 }
762
763 #define khugepaged_defrag()                                     \
764         (transparent_hugepage_flags &                           \
765          (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
766
767 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
768 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
769 {
770         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
771 }
772
773 #ifdef CONFIG_NUMA
774 static int hpage_collapse_find_target_node(struct collapse_control *cc)
775 {
776         int nid, target_node = 0, max_value = 0;
777
778         /* find first node with max normal pages hit */
779         for (nid = 0; nid < MAX_NUMNODES; nid++)
780                 if (cc->node_load[nid] > max_value) {
781                         max_value = cc->node_load[nid];
782                         target_node = nid;
783                 }
784
785         for_each_online_node(nid) {
786                 if (max_value == cc->node_load[nid])
787                         node_set(nid, cc->alloc_nmask);
788         }
789
790         return target_node;
791 }
792 #else
793 static int hpage_collapse_find_target_node(struct collapse_control *cc)
794 {
795         return 0;
796 }
797 #endif
798
799 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
800                                       nodemask_t *nmask)
801 {
802         *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
803         if (unlikely(!*hpage)) {
804                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
805                 return false;
806         }
807
808         prep_transhuge_page(*hpage);
809         count_vm_event(THP_COLLAPSE_ALLOC);
810         return true;
811 }
812
813 /*
814  * If mmap_lock temporarily dropped, revalidate vma
815  * before taking mmap_lock.
816  * Returns enum scan_result value.
817  */
818
819 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
820                                    bool expect_anon,
821                                    struct vm_area_struct **vmap,
822                                    struct collapse_control *cc)
823 {
824         struct vm_area_struct *vma;
825
826         if (unlikely(hpage_collapse_test_exit(mm)))
827                 return SCAN_ANY_PROCESS;
828
829         *vmap = vma = find_vma(mm, address);
830         if (!vma)
831                 return SCAN_VMA_NULL;
832
833         if (!transhuge_vma_suitable(vma, address))
834                 return SCAN_ADDRESS_RANGE;
835         if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
836                                 cc->is_khugepaged))
837                 return SCAN_VMA_CHECK;
838         /*
839          * Anon VMA expected, the address may be unmapped then
840          * remapped to file after khugepaged reaquired the mmap_lock.
841          *
842          * hugepage_vma_check may return true for qualified file
843          * vmas.
844          */
845         if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
846                 return SCAN_PAGE_ANON;
847         return SCAN_SUCCEED;
848 }
849
850 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
851                                    unsigned long address,
852                                    pmd_t **pmd)
853 {
854         pmd_t pmde;
855
856         *pmd = mm_find_pmd(mm, address);
857         if (!*pmd)
858                 return SCAN_PMD_NULL;
859
860         pmde = pmd_read_atomic(*pmd);
861
862 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
863         /* See comments in pmd_none_or_trans_huge_or_clear_bad() */
864         barrier();
865 #endif
866         if (pmd_none(pmde))
867                 return SCAN_PMD_NONE;
868         if (pmd_trans_huge(pmde))
869                 return SCAN_PMD_MAPPED;
870         if (pmd_bad(pmde))
871                 return SCAN_PMD_NULL;
872         return SCAN_SUCCEED;
873 }
874
875 static int check_pmd_still_valid(struct mm_struct *mm,
876                                  unsigned long address,
877                                  pmd_t *pmd)
878 {
879         pmd_t *new_pmd;
880         int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
881
882         if (result != SCAN_SUCCEED)
883                 return result;
884         if (new_pmd != pmd)
885                 return SCAN_FAIL;
886         return SCAN_SUCCEED;
887 }
888
889 /*
890  * Bring missing pages in from swap, to complete THP collapse.
891  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
892  *
893  * Called and returns without pte mapped or spinlocks held.
894  * Note that if false is returned, mmap_lock will be released.
895  */
896
897 static int __collapse_huge_page_swapin(struct mm_struct *mm,
898                                        struct vm_area_struct *vma,
899                                        unsigned long haddr, pmd_t *pmd,
900                                        int referenced)
901 {
902         int swapped_in = 0;
903         vm_fault_t ret = 0;
904         unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
905
906         for (address = haddr; address < end; address += PAGE_SIZE) {
907                 struct vm_fault vmf = {
908                         .vma = vma,
909                         .address = address,
910                         .pgoff = linear_page_index(vma, haddr),
911                         .flags = FAULT_FLAG_ALLOW_RETRY,
912                         .pmd = pmd,
913                 };
914
915                 vmf.pte = pte_offset_map(pmd, address);
916                 vmf.orig_pte = *vmf.pte;
917                 if (!is_swap_pte(vmf.orig_pte)) {
918                         pte_unmap(vmf.pte);
919                         continue;
920                 }
921                 ret = do_swap_page(&vmf);
922
923                 /*
924                  * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
925                  * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
926                  * we do not retry here and swap entry will remain in pagetable
927                  * resulting in later failure.
928                  */
929                 if (ret & VM_FAULT_RETRY) {
930                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
931                         /* Likely, but not guaranteed, that page lock failed */
932                         return SCAN_PAGE_LOCK;
933                 }
934                 if (ret & VM_FAULT_ERROR) {
935                         mmap_read_unlock(mm);
936                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
937                         return SCAN_FAIL;
938                 }
939                 swapped_in++;
940         }
941
942         /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
943         if (swapped_in)
944                 lru_add_drain();
945
946         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
947         return SCAN_SUCCEED;
948 }
949
950 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
951                               struct collapse_control *cc)
952 {
953         gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
954                      GFP_TRANSHUGE);
955         int node = hpage_collapse_find_target_node(cc);
956
957         if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
958                 return SCAN_ALLOC_HUGE_PAGE_FAIL;
959         if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp)))
960                 return SCAN_CGROUP_CHARGE_FAIL;
961         count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
962         return SCAN_SUCCEED;
963 }
964
965 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
966                               int referenced, int unmapped,
967                               struct collapse_control *cc)
968 {
969         LIST_HEAD(compound_pagelist);
970         pmd_t *pmd, _pmd;
971         pte_t *pte;
972         pgtable_t pgtable;
973         struct page *hpage;
974         spinlock_t *pmd_ptl, *pte_ptl;
975         int result = SCAN_FAIL;
976         struct vm_area_struct *vma;
977         struct mmu_notifier_range range;
978
979         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
980
981         /*
982          * Before allocating the hugepage, release the mmap_lock read lock.
983          * The allocation can take potentially a long time if it involves
984          * sync compaction, and we do not need to hold the mmap_lock during
985          * that. We will recheck the vma after taking it again in write mode.
986          */
987         mmap_read_unlock(mm);
988
989         result = alloc_charge_hpage(&hpage, mm, cc);
990         if (result != SCAN_SUCCEED)
991                 goto out_nolock;
992
993         mmap_read_lock(mm);
994         result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
995         if (result != SCAN_SUCCEED) {
996                 mmap_read_unlock(mm);
997                 goto out_nolock;
998         }
999
1000         result = find_pmd_or_thp_or_none(mm, address, &pmd);
1001         if (result != SCAN_SUCCEED) {
1002                 mmap_read_unlock(mm);
1003                 goto out_nolock;
1004         }
1005
1006         if (unmapped) {
1007                 /*
1008                  * __collapse_huge_page_swapin will return with mmap_lock
1009                  * released when it fails. So we jump out_nolock directly in
1010                  * that case.  Continuing to collapse causes inconsistency.
1011                  */
1012                 result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1013                                                      referenced);
1014                 if (result != SCAN_SUCCEED)
1015                         goto out_nolock;
1016         }
1017
1018         mmap_read_unlock(mm);
1019         /*
1020          * Prevent all access to pagetables with the exception of
1021          * gup_fast later handled by the ptep_clear_flush and the VM
1022          * handled by the anon_vma lock + PG_lock.
1023          */
1024         mmap_write_lock(mm);
1025         result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1026         if (result != SCAN_SUCCEED)
1027                 goto out_up_write;
1028         /* check if the pmd is still valid */
1029         result = check_pmd_still_valid(mm, address, pmd);
1030         if (result != SCAN_SUCCEED)
1031                 goto out_up_write;
1032
1033         anon_vma_lock_write(vma->anon_vma);
1034
1035         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1036                                 address, address + HPAGE_PMD_SIZE);
1037         mmu_notifier_invalidate_range_start(&range);
1038
1039         pte = pte_offset_map(pmd, address);
1040         pte_ptl = pte_lockptr(mm, pmd);
1041
1042         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1043         /*
1044          * This removes any huge TLB entry from the CPU so we won't allow
1045          * huge and small TLB entries for the same virtual address to
1046          * avoid the risk of CPU bugs in that area.
1047          *
1048          * Parallel fast GUP is fine since fast GUP will back off when
1049          * it detects PMD is changed.
1050          */
1051         _pmd = pmdp_collapse_flush(vma, address, pmd);
1052         spin_unlock(pmd_ptl);
1053         mmu_notifier_invalidate_range_end(&range);
1054         tlb_remove_table_sync_one();
1055
1056         spin_lock(pte_ptl);
1057         result =  __collapse_huge_page_isolate(vma, address, pte, cc,
1058                                                &compound_pagelist);
1059         spin_unlock(pte_ptl);
1060
1061         if (unlikely(result != SCAN_SUCCEED)) {
1062                 pte_unmap(pte);
1063                 spin_lock(pmd_ptl);
1064                 BUG_ON(!pmd_none(*pmd));
1065                 /*
1066                  * We can only use set_pmd_at when establishing
1067                  * hugepmds and never for establishing regular pmds that
1068                  * points to regular pagetables. Use pmd_populate for that
1069                  */
1070                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1071                 spin_unlock(pmd_ptl);
1072                 anon_vma_unlock_write(vma->anon_vma);
1073                 goto out_up_write;
1074         }
1075
1076         /*
1077          * All pages are isolated and locked so anon_vma rmap
1078          * can't run anymore.
1079          */
1080         anon_vma_unlock_write(vma->anon_vma);
1081
1082         __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl,
1083                                   &compound_pagelist);
1084         pte_unmap(pte);
1085         /*
1086          * spin_lock() below is not the equivalent of smp_wmb(), but
1087          * the smp_wmb() inside __SetPageUptodate() can be reused to
1088          * avoid the copy_huge_page writes to become visible after
1089          * the set_pmd_at() write.
1090          */
1091         __SetPageUptodate(hpage);
1092         pgtable = pmd_pgtable(_pmd);
1093
1094         _pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1095         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1096
1097         spin_lock(pmd_ptl);
1098         BUG_ON(!pmd_none(*pmd));
1099         page_add_new_anon_rmap(hpage, vma, address);
1100         lru_cache_add_inactive_or_unevictable(hpage, vma);
1101         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1102         set_pmd_at(mm, address, pmd, _pmd);
1103         update_mmu_cache_pmd(vma, address, pmd);
1104         spin_unlock(pmd_ptl);
1105
1106         hpage = NULL;
1107
1108         result = SCAN_SUCCEED;
1109 out_up_write:
1110         mmap_write_unlock(mm);
1111 out_nolock:
1112         if (hpage) {
1113                 mem_cgroup_uncharge(page_folio(hpage));
1114                 put_page(hpage);
1115         }
1116         trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1117         return result;
1118 }
1119
1120 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1121                                    struct vm_area_struct *vma,
1122                                    unsigned long address, bool *mmap_locked,
1123                                    struct collapse_control *cc)
1124 {
1125         pmd_t *pmd;
1126         pte_t *pte, *_pte;
1127         int result = SCAN_FAIL, referenced = 0;
1128         int none_or_zero = 0, shared = 0;
1129         struct page *page = NULL;
1130         unsigned long _address;
1131         spinlock_t *ptl;
1132         int node = NUMA_NO_NODE, unmapped = 0;
1133         bool writable = false;
1134
1135         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1136
1137         result = find_pmd_or_thp_or_none(mm, address, &pmd);
1138         if (result != SCAN_SUCCEED)
1139                 goto out;
1140
1141         memset(cc->node_load, 0, sizeof(cc->node_load));
1142         nodes_clear(cc->alloc_nmask);
1143         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1144         for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1145              _pte++, _address += PAGE_SIZE) {
1146                 pte_t pteval = *_pte;
1147                 if (is_swap_pte(pteval)) {
1148                         ++unmapped;
1149                         if (!cc->is_khugepaged ||
1150                             unmapped <= khugepaged_max_ptes_swap) {
1151                                 /*
1152                                  * Always be strict with uffd-wp
1153                                  * enabled swap entries.  Please see
1154                                  * comment below for pte_uffd_wp().
1155                                  */
1156                                 if (pte_swp_uffd_wp(pteval)) {
1157                                         result = SCAN_PTE_UFFD_WP;
1158                                         goto out_unmap;
1159                                 }
1160                                 continue;
1161                         } else {
1162                                 result = SCAN_EXCEED_SWAP_PTE;
1163                                 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1164                                 goto out_unmap;
1165                         }
1166                 }
1167                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1168                         ++none_or_zero;
1169                         if (!userfaultfd_armed(vma) &&
1170                             (!cc->is_khugepaged ||
1171                              none_or_zero <= khugepaged_max_ptes_none)) {
1172                                 continue;
1173                         } else {
1174                                 result = SCAN_EXCEED_NONE_PTE;
1175                                 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1176                                 goto out_unmap;
1177                         }
1178                 }
1179                 if (pte_uffd_wp(pteval)) {
1180                         /*
1181                          * Don't collapse the page if any of the small
1182                          * PTEs are armed with uffd write protection.
1183                          * Here we can also mark the new huge pmd as
1184                          * write protected if any of the small ones is
1185                          * marked but that could bring unknown
1186                          * userfault messages that falls outside of
1187                          * the registered range.  So, just be simple.
1188                          */
1189                         result = SCAN_PTE_UFFD_WP;
1190                         goto out_unmap;
1191                 }
1192                 if (pte_write(pteval))
1193                         writable = true;
1194
1195                 page = vm_normal_page(vma, _address, pteval);
1196                 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1197                         result = SCAN_PAGE_NULL;
1198                         goto out_unmap;
1199                 }
1200
1201                 if (page_mapcount(page) > 1) {
1202                         ++shared;
1203                         if (cc->is_khugepaged &&
1204                             shared > khugepaged_max_ptes_shared) {
1205                                 result = SCAN_EXCEED_SHARED_PTE;
1206                                 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1207                                 goto out_unmap;
1208                         }
1209                 }
1210
1211                 page = compound_head(page);
1212
1213                 /*
1214                  * Record which node the original page is from and save this
1215                  * information to cc->node_load[].
1216                  * Khugepaged will allocate hugepage from the node has the max
1217                  * hit record.
1218                  */
1219                 node = page_to_nid(page);
1220                 if (hpage_collapse_scan_abort(node, cc)) {
1221                         result = SCAN_SCAN_ABORT;
1222                         goto out_unmap;
1223                 }
1224                 cc->node_load[node]++;
1225                 if (!PageLRU(page)) {
1226                         result = SCAN_PAGE_LRU;
1227                         goto out_unmap;
1228                 }
1229                 if (PageLocked(page)) {
1230                         result = SCAN_PAGE_LOCK;
1231                         goto out_unmap;
1232                 }
1233                 if (!PageAnon(page)) {
1234                         result = SCAN_PAGE_ANON;
1235                         goto out_unmap;
1236                 }
1237
1238                 /*
1239                  * Check if the page has any GUP (or other external) pins.
1240                  *
1241                  * Here the check is racy it may see total_mapcount > refcount
1242                  * in some cases.
1243                  * For example, one process with one forked child process.
1244                  * The parent has the PMD split due to MADV_DONTNEED, then
1245                  * the child is trying unmap the whole PMD, but khugepaged
1246                  * may be scanning the parent between the child has
1247                  * PageDoubleMap flag cleared and dec the mapcount.  So
1248                  * khugepaged may see total_mapcount > refcount.
1249                  *
1250                  * But such case is ephemeral we could always retry collapse
1251                  * later.  However it may report false positive if the page
1252                  * has excessive GUP pins (i.e. 512).  Anyway the same check
1253                  * will be done again later the risk seems low.
1254                  */
1255                 if (!is_refcount_suitable(page)) {
1256                         result = SCAN_PAGE_COUNT;
1257                         goto out_unmap;
1258                 }
1259
1260                 /*
1261                  * If collapse was initiated by khugepaged, check that there is
1262                  * enough young pte to justify collapsing the page
1263                  */
1264                 if (cc->is_khugepaged &&
1265                     (pte_young(pteval) || page_is_young(page) ||
1266                      PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1267                                                                      address)))
1268                         referenced++;
1269         }
1270         if (!writable) {
1271                 result = SCAN_PAGE_RO;
1272         } else if (cc->is_khugepaged &&
1273                    (!referenced ||
1274                     (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1275                 result = SCAN_LACK_REFERENCED_PAGE;
1276         } else {
1277                 result = SCAN_SUCCEED;
1278         }
1279 out_unmap:
1280         pte_unmap_unlock(pte, ptl);
1281         if (result == SCAN_SUCCEED) {
1282                 result = collapse_huge_page(mm, address, referenced,
1283                                             unmapped, cc);
1284                 /* collapse_huge_page will return with the mmap_lock released */
1285                 *mmap_locked = false;
1286         }
1287 out:
1288         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1289                                      none_or_zero, result, unmapped);
1290         return result;
1291 }
1292
1293 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1294 {
1295         struct mm_slot *slot = &mm_slot->slot;
1296         struct mm_struct *mm = slot->mm;
1297
1298         lockdep_assert_held(&khugepaged_mm_lock);
1299
1300         if (hpage_collapse_test_exit(mm)) {
1301                 /* free mm_slot */
1302                 hash_del(&slot->hash);
1303                 list_del(&slot->mm_node);
1304
1305                 /*
1306                  * Not strictly needed because the mm exited already.
1307                  *
1308                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1309                  */
1310
1311                 /* khugepaged_mm_lock actually not necessary for the below */
1312                 mm_slot_free(mm_slot_cache, mm_slot);
1313                 mmdrop(mm);
1314         }
1315 }
1316
1317 #ifdef CONFIG_SHMEM
1318 /*
1319  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1320  * khugepaged should try to collapse the page table.
1321  *
1322  * Note that following race exists:
1323  * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A,
1324  *     emptying the A's ->pte_mapped_thp[] array.
1325  * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and
1326  *     retract_page_tables() finds a VMA in mm_struct A mapping the same extent
1327  *     (at virtual address X) and adds an entry (for X) into mm_struct A's
1328  *     ->pte-mapped_thp[] array.
1329  * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X,
1330  *     sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry
1331  *     (for X) into mm_struct A's ->pte-mapped_thp[] array.
1332  * Thus, it's possible the same address is added multiple times for the same
1333  * mm_struct.  Should this happen, we'll simply attempt
1334  * collapse_pte_mapped_thp() multiple times for the same address, under the same
1335  * exclusive mmap_lock, and assuming the first call is successful, subsequent
1336  * attempts will return quickly (without grabbing any additional locks) when
1337  * a huge pmd is found in find_pmd_or_thp_or_none().  Since this is a cheap
1338  * check, and since this is a rare occurrence, the cost of preventing this
1339  * "multiple-add" is thought to be more expensive than just handling it, should
1340  * it occur.
1341  */
1342 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1343                                           unsigned long addr)
1344 {
1345         struct khugepaged_mm_slot *mm_slot;
1346         struct mm_slot *slot;
1347         bool ret = false;
1348
1349         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1350
1351         spin_lock(&khugepaged_mm_lock);
1352         slot = mm_slot_lookup(mm_slots_hash, mm);
1353         mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
1354         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) {
1355                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1356                 ret = true;
1357         }
1358         spin_unlock(&khugepaged_mm_lock);
1359         return ret;
1360 }
1361
1362 /* hpage must be locked, and mmap_lock must be held in write */
1363 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1364                         pmd_t *pmdp, struct page *hpage)
1365 {
1366         struct vm_fault vmf = {
1367                 .vma = vma,
1368                 .address = addr,
1369                 .flags = 0,
1370                 .pmd = pmdp,
1371         };
1372
1373         VM_BUG_ON(!PageTransHuge(hpage));
1374         mmap_assert_write_locked(vma->vm_mm);
1375
1376         if (do_set_pmd(&vmf, hpage))
1377                 return SCAN_FAIL;
1378
1379         get_page(hpage);
1380         return SCAN_SUCCEED;
1381 }
1382
1383 /*
1384  * A note about locking:
1385  * Trying to take the page table spinlocks would be useless here because those
1386  * are only used to synchronize:
1387  *
1388  *  - modifying terminal entries (ones that point to a data page, not to another
1389  *    page table)
1390  *  - installing *new* non-terminal entries
1391  *
1392  * Instead, we need roughly the same kind of protection as free_pgtables() or
1393  * mm_take_all_locks() (but only for a single VMA):
1394  * The mmap lock together with this VMA's rmap locks covers all paths towards
1395  * the page table entries we're messing with here, except for hardware page
1396  * table walks and lockless_pages_from_mm().
1397  */
1398 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1399                                   unsigned long addr, pmd_t *pmdp)
1400 {
1401         pmd_t pmd;
1402         struct mmu_notifier_range range;
1403
1404         mmap_assert_write_locked(mm);
1405         if (vma->vm_file)
1406                 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem);
1407         /*
1408          * All anon_vmas attached to the VMA have the same root and are
1409          * therefore locked by the same lock.
1410          */
1411         if (vma->anon_vma)
1412                 lockdep_assert_held_write(&vma->anon_vma->root->rwsem);
1413
1414         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, addr,
1415                                 addr + HPAGE_PMD_SIZE);
1416         mmu_notifier_invalidate_range_start(&range);
1417         pmd = pmdp_collapse_flush(vma, addr, pmdp);
1418         tlb_remove_table_sync_one();
1419         mmu_notifier_invalidate_range_end(&range);
1420         mm_dec_nr_ptes(mm);
1421         page_table_check_pte_clear_range(mm, addr, pmd);
1422         pte_free(mm, pmd_pgtable(pmd));
1423 }
1424
1425 /**
1426  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1427  * address haddr.
1428  *
1429  * @mm: process address space where collapse happens
1430  * @addr: THP collapse address
1431  * @install_pmd: If a huge PMD should be installed
1432  *
1433  * This function checks whether all the PTEs in the PMD are pointing to the
1434  * right THP. If so, retract the page table so the THP can refault in with
1435  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1436  */
1437 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1438                             bool install_pmd)
1439 {
1440         unsigned long haddr = addr & HPAGE_PMD_MASK;
1441         struct vm_area_struct *vma = vma_lookup(mm, haddr);
1442         struct page *hpage;
1443         pte_t *start_pte, *pte;
1444         pmd_t *pmd;
1445         spinlock_t *ptl;
1446         int count = 0, result = SCAN_FAIL;
1447         int i;
1448
1449         mmap_assert_write_locked(mm);
1450
1451         /* Fast check before locking page if already PMD-mapped */
1452         result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1453         if (result == SCAN_PMD_MAPPED)
1454                 return result;
1455
1456         if (!vma || !vma->vm_file ||
1457             !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1458                 return SCAN_VMA_CHECK;
1459
1460         /*
1461          * If we are here, we've succeeded in replacing all the native pages
1462          * in the page cache with a single hugepage. If a mm were to fault-in
1463          * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1464          * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1465          * analogously elide sysfs THP settings here.
1466          */
1467         if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1468                 return SCAN_VMA_CHECK;
1469
1470         /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1471         if (userfaultfd_wp(vma))
1472                 return SCAN_PTE_UFFD_WP;
1473
1474         hpage = find_lock_page(vma->vm_file->f_mapping,
1475                                linear_page_index(vma, haddr));
1476         if (!hpage)
1477                 return SCAN_PAGE_NULL;
1478
1479         if (!PageHead(hpage)) {
1480                 result = SCAN_FAIL;
1481                 goto drop_hpage;
1482         }
1483
1484         if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1485                 result = SCAN_PAGE_COMPOUND;
1486                 goto drop_hpage;
1487         }
1488
1489         switch (result) {
1490         case SCAN_SUCCEED:
1491                 break;
1492         case SCAN_PMD_NONE:
1493                 /*
1494                  * In MADV_COLLAPSE path, possible race with khugepaged where
1495                  * all pte entries have been removed and pmd cleared.  If so,
1496                  * skip all the pte checks and just update the pmd mapping.
1497                  */
1498                 goto maybe_install_pmd;
1499         default:
1500                 goto drop_hpage;
1501         }
1502
1503         /*
1504          * We need to lock the mapping so that from here on, only GUP-fast and
1505          * hardware page walks can access the parts of the page tables that
1506          * we're operating on.
1507          * See collapse_and_free_pmd().
1508          */
1509         i_mmap_lock_write(vma->vm_file->f_mapping);
1510
1511         /*
1512          * This spinlock should be unnecessary: Nobody else should be accessing
1513          * the page tables under spinlock protection here, only
1514          * lockless_pages_from_mm() and the hardware page walker can access page
1515          * tables while all the high-level locks are held in write mode.
1516          */
1517         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1518         result = SCAN_FAIL;
1519
1520         /* step 1: check all mapped PTEs are to the right huge page */
1521         for (i = 0, addr = haddr, pte = start_pte;
1522              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1523                 struct page *page;
1524
1525                 /* empty pte, skip */
1526                 if (pte_none(*pte))
1527                         continue;
1528
1529                 /* page swapped out, abort */
1530                 if (!pte_present(*pte)) {
1531                         result = SCAN_PTE_NON_PRESENT;
1532                         goto abort;
1533                 }
1534
1535                 page = vm_normal_page(vma, addr, *pte);
1536                 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1537                         page = NULL;
1538                 /*
1539                  * Note that uprobe, debugger, or MAP_PRIVATE may change the
1540                  * page table, but the new page will not be a subpage of hpage.
1541                  */
1542                 if (hpage + i != page)
1543                         goto abort;
1544                 count++;
1545         }
1546
1547         /* step 2: adjust rmap */
1548         for (i = 0, addr = haddr, pte = start_pte;
1549              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1550                 struct page *page;
1551
1552                 if (pte_none(*pte))
1553                         continue;
1554                 page = vm_normal_page(vma, addr, *pte);
1555                 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1556                         goto abort;
1557                 page_remove_rmap(page, vma, false);
1558         }
1559
1560         pte_unmap_unlock(start_pte, ptl);
1561
1562         /* step 3: set proper refcount and mm_counters. */
1563         if (count) {
1564                 page_ref_sub(hpage, count);
1565                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1566         }
1567
1568         /* step 4: remove pte entries */
1569         /* we make no change to anon, but protect concurrent anon page lookup */
1570         if (vma->anon_vma)
1571                 anon_vma_lock_write(vma->anon_vma);
1572
1573         collapse_and_free_pmd(mm, vma, haddr, pmd);
1574
1575         if (vma->anon_vma)
1576                 anon_vma_unlock_write(vma->anon_vma);
1577         i_mmap_unlock_write(vma->vm_file->f_mapping);
1578
1579 maybe_install_pmd:
1580         /* step 5: install pmd entry */
1581         result = install_pmd
1582                         ? set_huge_pmd(vma, haddr, pmd, hpage)
1583                         : SCAN_SUCCEED;
1584
1585 drop_hpage:
1586         unlock_page(hpage);
1587         put_page(hpage);
1588         return result;
1589
1590 abort:
1591         pte_unmap_unlock(start_pte, ptl);
1592         i_mmap_unlock_write(vma->vm_file->f_mapping);
1593         goto drop_hpage;
1594 }
1595
1596 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
1597 {
1598         struct mm_slot *slot = &mm_slot->slot;
1599         struct mm_struct *mm = slot->mm;
1600         int i;
1601
1602         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1603                 return;
1604
1605         if (!mmap_write_trylock(mm))
1606                 return;
1607
1608         if (unlikely(hpage_collapse_test_exit(mm)))
1609                 goto out;
1610
1611         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1612                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false);
1613
1614 out:
1615         mm_slot->nr_pte_mapped_thp = 0;
1616         mmap_write_unlock(mm);
1617 }
1618
1619 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff,
1620                                struct mm_struct *target_mm,
1621                                unsigned long target_addr, struct page *hpage,
1622                                struct collapse_control *cc)
1623 {
1624         struct vm_area_struct *vma;
1625         int target_result = SCAN_FAIL;
1626
1627         i_mmap_lock_write(mapping);
1628         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1629                 int result = SCAN_FAIL;
1630                 struct mm_struct *mm = NULL;
1631                 unsigned long addr = 0;
1632                 pmd_t *pmd;
1633                 bool is_target = false;
1634
1635                 /*
1636                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1637                  * got written to. These VMAs are likely not worth investing
1638                  * mmap_write_lock(mm) as PMD-mapping is likely to be split
1639                  * later.
1640                  *
1641                  * Note that vma->anon_vma check is racy: it can be set up after
1642                  * the check but before we took mmap_lock by the fault path.
1643                  * But page lock would prevent establishing any new ptes of the
1644                  * page, so we are safe.
1645                  *
1646                  * An alternative would be drop the check, but check that page
1647                  * table is clear before calling pmdp_collapse_flush() under
1648                  * ptl. It has higher chance to recover THP for the VMA, but
1649                  * has higher cost too. It would also probably require locking
1650                  * the anon_vma.
1651                  */
1652                 if (READ_ONCE(vma->anon_vma)) {
1653                         result = SCAN_PAGE_ANON;
1654                         goto next;
1655                 }
1656                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1657                 if (addr & ~HPAGE_PMD_MASK ||
1658                     vma->vm_end < addr + HPAGE_PMD_SIZE) {
1659                         result = SCAN_VMA_CHECK;
1660                         goto next;
1661                 }
1662                 mm = vma->vm_mm;
1663                 is_target = mm == target_mm && addr == target_addr;
1664                 result = find_pmd_or_thp_or_none(mm, addr, &pmd);
1665                 if (result != SCAN_SUCCEED)
1666                         goto next;
1667                 /*
1668                  * We need exclusive mmap_lock to retract page table.
1669                  *
1670                  * We use trylock due to lock inversion: we need to acquire
1671                  * mmap_lock while holding page lock. Fault path does it in
1672                  * reverse order. Trylock is a way to avoid deadlock.
1673                  *
1674                  * Also, it's not MADV_COLLAPSE's job to collapse other
1675                  * mappings - let khugepaged take care of them later.
1676                  */
1677                 result = SCAN_PTE_MAPPED_HUGEPAGE;
1678                 if ((cc->is_khugepaged || is_target) &&
1679                     mmap_write_trylock(mm)) {
1680                         /*
1681                          * Re-check whether we have an ->anon_vma, because
1682                          * collapse_and_free_pmd() requires that either no
1683                          * ->anon_vma exists or the anon_vma is locked.
1684                          * We already checked ->anon_vma above, but that check
1685                          * is racy because ->anon_vma can be populated under the
1686                          * mmap lock in read mode.
1687                          */
1688                         if (vma->anon_vma) {
1689                                 result = SCAN_PAGE_ANON;
1690                                 goto unlock_next;
1691                         }
1692                         /*
1693                          * When a vma is registered with uffd-wp, we can't
1694                          * recycle the pmd pgtable because there can be pte
1695                          * markers installed.  Skip it only, so the rest mm/vma
1696                          * can still have the same file mapped hugely, however
1697                          * it'll always mapped in small page size for uffd-wp
1698                          * registered ranges.
1699                          */
1700                         if (hpage_collapse_test_exit(mm)) {
1701                                 result = SCAN_ANY_PROCESS;
1702                                 goto unlock_next;
1703                         }
1704                         if (userfaultfd_wp(vma)) {
1705                                 result = SCAN_PTE_UFFD_WP;
1706                                 goto unlock_next;
1707                         }
1708                         collapse_and_free_pmd(mm, vma, addr, pmd);
1709                         if (!cc->is_khugepaged && is_target)
1710                                 result = set_huge_pmd(vma, addr, pmd, hpage);
1711                         else
1712                                 result = SCAN_SUCCEED;
1713
1714 unlock_next:
1715                         mmap_write_unlock(mm);
1716                         goto next;
1717                 }
1718                 /*
1719                  * Calling context will handle target mm/addr. Otherwise, let
1720                  * khugepaged try again later.
1721                  */
1722                 if (!is_target) {
1723                         khugepaged_add_pte_mapped_thp(mm, addr);
1724                         continue;
1725                 }
1726 next:
1727                 if (is_target)
1728                         target_result = result;
1729         }
1730         i_mmap_unlock_write(mapping);
1731         return target_result;
1732 }
1733
1734 /**
1735  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1736  *
1737  * @mm: process address space where collapse happens
1738  * @addr: virtual collapse start address
1739  * @file: file that collapse on
1740  * @start: collapse start address
1741  * @cc: collapse context and scratchpad
1742  *
1743  * Basic scheme is simple, details are more complex:
1744  *  - allocate and lock a new huge page;
1745  *  - scan page cache replacing old pages with the new one
1746  *    + swap/gup in pages if necessary;
1747  *    + fill in gaps;
1748  *    + keep old pages around in case rollback is required;
1749  *  - if replacing succeeds:
1750  *    + copy data over;
1751  *    + free old pages;
1752  *    + unlock huge page;
1753  *  - if replacing failed;
1754  *    + put all pages back and unfreeze them;
1755  *    + restore gaps in the page cache;
1756  *    + unlock and free huge page;
1757  */
1758 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1759                          struct file *file, pgoff_t start,
1760                          struct collapse_control *cc)
1761 {
1762         struct address_space *mapping = file->f_mapping;
1763         struct page *hpage;
1764         pgoff_t index, end = start + HPAGE_PMD_NR;
1765         LIST_HEAD(pagelist);
1766         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1767         int nr_none = 0, result = SCAN_SUCCEED;
1768         bool is_shmem = shmem_file(file);
1769         int nr;
1770
1771         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1772         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1773
1774         result = alloc_charge_hpage(&hpage, mm, cc);
1775         if (result != SCAN_SUCCEED)
1776                 goto out;
1777
1778         /*
1779          * Ensure we have slots for all the pages in the range.  This is
1780          * almost certainly a no-op because most of the pages must be present
1781          */
1782         do {
1783                 xas_lock_irq(&xas);
1784                 xas_create_range(&xas);
1785                 if (!xas_error(&xas))
1786                         break;
1787                 xas_unlock_irq(&xas);
1788                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1789                         result = SCAN_FAIL;
1790                         goto out;
1791                 }
1792         } while (1);
1793
1794         __SetPageLocked(hpage);
1795         if (is_shmem)
1796                 __SetPageSwapBacked(hpage);
1797         hpage->index = start;
1798         hpage->mapping = mapping;
1799
1800         /*
1801          * At this point the hpage is locked and not up-to-date.
1802          * It's safe to insert it into the page cache, because nobody would
1803          * be able to map it or use it in another way until we unlock it.
1804          */
1805
1806         xas_set(&xas, start);
1807         for (index = start; index < end; index++) {
1808                 struct page *page = xas_next(&xas);
1809
1810                 VM_BUG_ON(index != xas.xa_index);
1811                 if (is_shmem) {
1812                         if (!page) {
1813                                 /*
1814                                  * Stop if extent has been truncated or
1815                                  * hole-punched, and is now completely
1816                                  * empty.
1817                                  */
1818                                 if (index == start) {
1819                                         if (!xas_next_entry(&xas, end - 1)) {
1820                                                 result = SCAN_TRUNCATED;
1821                                                 goto xa_locked;
1822                                         }
1823                                         xas_set(&xas, index);
1824                                 }
1825                                 if (!shmem_charge(mapping->host, 1)) {
1826                                         result = SCAN_FAIL;
1827                                         goto xa_locked;
1828                                 }
1829                                 xas_store(&xas, hpage);
1830                                 nr_none++;
1831                                 continue;
1832                         }
1833
1834                         if (xa_is_value(page) || !PageUptodate(page)) {
1835                                 struct folio *folio;
1836
1837                                 xas_unlock_irq(&xas);
1838                                 /* swap in or instantiate fallocated page */
1839                                 if (shmem_get_folio(mapping->host, index,
1840                                                 &folio, SGP_NOALLOC)) {
1841                                         result = SCAN_FAIL;
1842                                         goto xa_unlocked;
1843                                 }
1844                                 page = folio_file_page(folio, index);
1845                         } else if (trylock_page(page)) {
1846                                 get_page(page);
1847                                 xas_unlock_irq(&xas);
1848                         } else {
1849                                 result = SCAN_PAGE_LOCK;
1850                                 goto xa_locked;
1851                         }
1852                 } else {        /* !is_shmem */
1853                         if (!page || xa_is_value(page)) {
1854                                 xas_unlock_irq(&xas);
1855                                 page_cache_sync_readahead(mapping, &file->f_ra,
1856                                                           file, index,
1857                                                           end - index);
1858                                 /* drain pagevecs to help isolate_lru_page() */
1859                                 lru_add_drain();
1860                                 page = find_lock_page(mapping, index);
1861                                 if (unlikely(page == NULL)) {
1862                                         result = SCAN_FAIL;
1863                                         goto xa_unlocked;
1864                                 }
1865                         } else if (PageDirty(page)) {
1866                                 /*
1867                                  * khugepaged only works on read-only fd,
1868                                  * so this page is dirty because it hasn't
1869                                  * been flushed since first write. There
1870                                  * won't be new dirty pages.
1871                                  *
1872                                  * Trigger async flush here and hope the
1873                                  * writeback is done when khugepaged
1874                                  * revisits this page.
1875                                  *
1876                                  * This is a one-off situation. We are not
1877                                  * forcing writeback in loop.
1878                                  */
1879                                 xas_unlock_irq(&xas);
1880                                 filemap_flush(mapping);
1881                                 result = SCAN_FAIL;
1882                                 goto xa_unlocked;
1883                         } else if (PageWriteback(page)) {
1884                                 xas_unlock_irq(&xas);
1885                                 result = SCAN_FAIL;
1886                                 goto xa_unlocked;
1887                         } else if (trylock_page(page)) {
1888                                 get_page(page);
1889                                 xas_unlock_irq(&xas);
1890                         } else {
1891                                 result = SCAN_PAGE_LOCK;
1892                                 goto xa_locked;
1893                         }
1894                 }
1895
1896                 /*
1897                  * The page must be locked, so we can drop the i_pages lock
1898                  * without racing with truncate.
1899                  */
1900                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1901
1902                 /* make sure the page is up to date */
1903                 if (unlikely(!PageUptodate(page))) {
1904                         result = SCAN_FAIL;
1905                         goto out_unlock;
1906                 }
1907
1908                 /*
1909                  * If file was truncated then extended, or hole-punched, before
1910                  * we locked the first page, then a THP might be there already.
1911                  * This will be discovered on the first iteration.
1912                  */
1913                 if (PageTransCompound(page)) {
1914                         struct page *head = compound_head(page);
1915
1916                         result = compound_order(head) == HPAGE_PMD_ORDER &&
1917                                         head->index == start
1918                                         /* Maybe PMD-mapped */
1919                                         ? SCAN_PTE_MAPPED_HUGEPAGE
1920                                         : SCAN_PAGE_COMPOUND;
1921                         goto out_unlock;
1922                 }
1923
1924                 if (page_mapping(page) != mapping) {
1925                         result = SCAN_TRUNCATED;
1926                         goto out_unlock;
1927                 }
1928
1929                 if (!is_shmem && (PageDirty(page) ||
1930                                   PageWriteback(page))) {
1931                         /*
1932                          * khugepaged only works on read-only fd, so this
1933                          * page is dirty because it hasn't been flushed
1934                          * since first write.
1935                          */
1936                         result = SCAN_FAIL;
1937                         goto out_unlock;
1938                 }
1939
1940                 if (isolate_lru_page(page)) {
1941                         result = SCAN_DEL_PAGE_LRU;
1942                         goto out_unlock;
1943                 }
1944
1945                 if (page_has_private(page) &&
1946                     !try_to_release_page(page, GFP_KERNEL)) {
1947                         result = SCAN_PAGE_HAS_PRIVATE;
1948                         putback_lru_page(page);
1949                         goto out_unlock;
1950                 }
1951
1952                 if (page_mapped(page))
1953                         try_to_unmap(page_folio(page),
1954                                         TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1955
1956                 xas_lock_irq(&xas);
1957                 xas_set(&xas, index);
1958
1959                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1960
1961                 /*
1962                  * The page is expected to have page_count() == 3:
1963                  *  - we hold a pin on it;
1964                  *  - one reference from page cache;
1965                  *  - one from isolate_lru_page;
1966                  */
1967                 if (!page_ref_freeze(page, 3)) {
1968                         result = SCAN_PAGE_COUNT;
1969                         xas_unlock_irq(&xas);
1970                         putback_lru_page(page);
1971                         goto out_unlock;
1972                 }
1973
1974                 /*
1975                  * Add the page to the list to be able to undo the collapse if
1976                  * something go wrong.
1977                  */
1978                 list_add_tail(&page->lru, &pagelist);
1979
1980                 /* Finally, replace with the new page. */
1981                 xas_store(&xas, hpage);
1982                 continue;
1983 out_unlock:
1984                 unlock_page(page);
1985                 put_page(page);
1986                 goto xa_unlocked;
1987         }
1988         nr = thp_nr_pages(hpage);
1989
1990         if (is_shmem)
1991                 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
1992         else {
1993                 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
1994                 filemap_nr_thps_inc(mapping);
1995                 /*
1996                  * Paired with smp_mb() in do_dentry_open() to ensure
1997                  * i_writecount is up to date and the update to nr_thps is
1998                  * visible. Ensures the page cache will be truncated if the
1999                  * file is opened writable.
2000                  */
2001                 smp_mb();
2002                 if (inode_is_open_for_write(mapping->host)) {
2003                         result = SCAN_FAIL;
2004                         __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr);
2005                         filemap_nr_thps_dec(mapping);
2006                         goto xa_locked;
2007                 }
2008         }
2009
2010         if (nr_none) {
2011                 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
2012                 /* nr_none is always 0 for non-shmem. */
2013                 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
2014         }
2015
2016         /* Join all the small entries into a single multi-index entry */
2017         xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2018         xas_store(&xas, hpage);
2019 xa_locked:
2020         xas_unlock_irq(&xas);
2021 xa_unlocked:
2022
2023         /*
2024          * If collapse is successful, flush must be done now before copying.
2025          * If collapse is unsuccessful, does flush actually need to be done?
2026          * Do it anyway, to clear the state.
2027          */
2028         try_to_unmap_flush();
2029
2030         if (result == SCAN_SUCCEED) {
2031                 struct page *page, *tmp;
2032
2033                 /*
2034                  * Replacing old pages with new one has succeeded, now we
2035                  * need to copy the content and free the old pages.
2036                  */
2037                 index = start;
2038                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2039                         while (index < page->index) {
2040                                 clear_highpage(hpage + (index % HPAGE_PMD_NR));
2041                                 index++;
2042                         }
2043                         copy_highpage(hpage + (page->index % HPAGE_PMD_NR),
2044                                       page);
2045                         list_del(&page->lru);
2046                         page->mapping = NULL;
2047                         page_ref_unfreeze(page, 1);
2048                         ClearPageActive(page);
2049                         ClearPageUnevictable(page);
2050                         unlock_page(page);
2051                         put_page(page);
2052                         index++;
2053                 }
2054                 while (index < end) {
2055                         clear_highpage(hpage + (index % HPAGE_PMD_NR));
2056                         index++;
2057                 }
2058
2059                 SetPageUptodate(hpage);
2060                 page_ref_add(hpage, HPAGE_PMD_NR - 1);
2061                 if (is_shmem)
2062                         set_page_dirty(hpage);
2063                 lru_cache_add(hpage);
2064
2065                 /*
2066                  * Remove pte page tables, so we can re-fault the page as huge.
2067                  */
2068                 result = retract_page_tables(mapping, start, mm, addr, hpage,
2069                                              cc);
2070                 unlock_page(hpage);
2071                 hpage = NULL;
2072         } else {
2073                 struct page *page;
2074
2075                 /* Something went wrong: roll back page cache changes */
2076                 xas_lock_irq(&xas);
2077                 if (nr_none) {
2078                         mapping->nrpages -= nr_none;
2079                         shmem_uncharge(mapping->host, nr_none);
2080                 }
2081
2082                 xas_set(&xas, start);
2083                 xas_for_each(&xas, page, end - 1) {
2084                         page = list_first_entry_or_null(&pagelist,
2085                                         struct page, lru);
2086                         if (!page || xas.xa_index < page->index) {
2087                                 if (!nr_none)
2088                                         break;
2089                                 nr_none--;
2090                                 /* Put holes back where they were */
2091                                 xas_store(&xas, NULL);
2092                                 continue;
2093                         }
2094
2095                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2096
2097                         /* Unfreeze the page. */
2098                         list_del(&page->lru);
2099                         page_ref_unfreeze(page, 2);
2100                         xas_store(&xas, page);
2101                         xas_pause(&xas);
2102                         xas_unlock_irq(&xas);
2103                         unlock_page(page);
2104                         putback_lru_page(page);
2105                         xas_lock_irq(&xas);
2106                 }
2107                 VM_BUG_ON(nr_none);
2108                 xas_unlock_irq(&xas);
2109
2110                 hpage->mapping = NULL;
2111         }
2112
2113         if (hpage)
2114                 unlock_page(hpage);
2115 out:
2116         VM_BUG_ON(!list_empty(&pagelist));
2117         if (hpage) {
2118                 mem_cgroup_uncharge(page_folio(hpage));
2119                 put_page(hpage);
2120         }
2121         /* TODO: tracepoints */
2122         return result;
2123 }
2124
2125 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2126                                     struct file *file, pgoff_t start,
2127                                     struct collapse_control *cc)
2128 {
2129         struct page *page = NULL;
2130         struct address_space *mapping = file->f_mapping;
2131         XA_STATE(xas, &mapping->i_pages, start);
2132         int present, swap;
2133         int node = NUMA_NO_NODE;
2134         int result = SCAN_SUCCEED;
2135
2136         present = 0;
2137         swap = 0;
2138         memset(cc->node_load, 0, sizeof(cc->node_load));
2139         nodes_clear(cc->alloc_nmask);
2140         rcu_read_lock();
2141         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2142                 if (xas_retry(&xas, page))
2143                         continue;
2144
2145                 if (xa_is_value(page)) {
2146                         ++swap;
2147                         if (cc->is_khugepaged &&
2148                             swap > khugepaged_max_ptes_swap) {
2149                                 result = SCAN_EXCEED_SWAP_PTE;
2150                                 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2151                                 break;
2152                         }
2153                         continue;
2154                 }
2155
2156                 /*
2157                  * TODO: khugepaged should compact smaller compound pages
2158                  * into a PMD sized page
2159                  */
2160                 if (PageTransCompound(page)) {
2161                         struct page *head = compound_head(page);
2162
2163                         result = compound_order(head) == HPAGE_PMD_ORDER &&
2164                                         head->index == start
2165                                         /* Maybe PMD-mapped */
2166                                         ? SCAN_PTE_MAPPED_HUGEPAGE
2167                                         : SCAN_PAGE_COMPOUND;
2168                         /*
2169                          * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2170                          * by the caller won't touch the page cache, and so
2171                          * it's safe to skip LRU and refcount checks before
2172                          * returning.
2173                          */
2174                         break;
2175                 }
2176
2177                 node = page_to_nid(page);
2178                 if (hpage_collapse_scan_abort(node, cc)) {
2179                         result = SCAN_SCAN_ABORT;
2180                         break;
2181                 }
2182                 cc->node_load[node]++;
2183
2184                 if (!PageLRU(page)) {
2185                         result = SCAN_PAGE_LRU;
2186                         break;
2187                 }
2188
2189                 if (page_count(page) !=
2190                     1 + page_mapcount(page) + page_has_private(page)) {
2191                         result = SCAN_PAGE_COUNT;
2192                         break;
2193                 }
2194
2195                 /*
2196                  * We probably should check if the page is referenced here, but
2197                  * nobody would transfer pte_young() to PageReferenced() for us.
2198                  * And rmap walk here is just too costly...
2199                  */
2200
2201                 present++;
2202
2203                 if (need_resched()) {
2204                         xas_pause(&xas);
2205                         cond_resched_rcu();
2206                 }
2207         }
2208         rcu_read_unlock();
2209
2210         if (result == SCAN_SUCCEED) {
2211                 if (cc->is_khugepaged &&
2212                     present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2213                         result = SCAN_EXCEED_NONE_PTE;
2214                         count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2215                 } else {
2216                         result = collapse_file(mm, addr, file, start, cc);
2217                 }
2218         }
2219
2220         trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2221         return result;
2222 }
2223 #else
2224 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2225                                     struct file *file, pgoff_t start,
2226                                     struct collapse_control *cc)
2227 {
2228         BUILD_BUG();
2229 }
2230
2231 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
2232 {
2233 }
2234
2235 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
2236                                           unsigned long addr)
2237 {
2238         return false;
2239 }
2240 #endif
2241
2242 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2243                                             struct collapse_control *cc)
2244         __releases(&khugepaged_mm_lock)
2245         __acquires(&khugepaged_mm_lock)
2246 {
2247         struct vma_iterator vmi;
2248         struct khugepaged_mm_slot *mm_slot;
2249         struct mm_slot *slot;
2250         struct mm_struct *mm;
2251         struct vm_area_struct *vma;
2252         int progress = 0;
2253
2254         VM_BUG_ON(!pages);
2255         lockdep_assert_held(&khugepaged_mm_lock);
2256         *result = SCAN_FAIL;
2257
2258         if (khugepaged_scan.mm_slot) {
2259                 mm_slot = khugepaged_scan.mm_slot;
2260                 slot = &mm_slot->slot;
2261         } else {
2262                 slot = list_entry(khugepaged_scan.mm_head.next,
2263                                      struct mm_slot, mm_node);
2264                 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2265                 khugepaged_scan.address = 0;
2266                 khugepaged_scan.mm_slot = mm_slot;
2267         }
2268         spin_unlock(&khugepaged_mm_lock);
2269         khugepaged_collapse_pte_mapped_thps(mm_slot);
2270
2271         mm = slot->mm;
2272         /*
2273          * Don't wait for semaphore (to avoid long wait times).  Just move to
2274          * the next mm on the list.
2275          */
2276         vma = NULL;
2277         if (unlikely(!mmap_read_trylock(mm)))
2278                 goto breakouterloop_mmap_lock;
2279
2280         progress++;
2281         if (unlikely(hpage_collapse_test_exit(mm)))
2282                 goto breakouterloop;
2283
2284         vma_iter_init(&vmi, mm, khugepaged_scan.address);
2285         for_each_vma(vmi, vma) {
2286                 unsigned long hstart, hend;
2287
2288                 cond_resched();
2289                 if (unlikely(hpage_collapse_test_exit(mm))) {
2290                         progress++;
2291                         break;
2292                 }
2293                 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2294 skip:
2295                         progress++;
2296                         continue;
2297                 }
2298                 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2299                 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2300                 if (khugepaged_scan.address > hend)
2301                         goto skip;
2302                 if (khugepaged_scan.address < hstart)
2303                         khugepaged_scan.address = hstart;
2304                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2305
2306                 while (khugepaged_scan.address < hend) {
2307                         bool mmap_locked = true;
2308
2309                         cond_resched();
2310                         if (unlikely(hpage_collapse_test_exit(mm)))
2311                                 goto breakouterloop;
2312
2313                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2314                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2315                                   hend);
2316                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2317                                 struct file *file = get_file(vma->vm_file);
2318                                 pgoff_t pgoff = linear_page_index(vma,
2319                                                 khugepaged_scan.address);
2320
2321                                 mmap_read_unlock(mm);
2322                                 *result = hpage_collapse_scan_file(mm,
2323                                                                    khugepaged_scan.address,
2324                                                                    file, pgoff, cc);
2325                                 mmap_locked = false;
2326                                 fput(file);
2327                         } else {
2328                                 *result = hpage_collapse_scan_pmd(mm, vma,
2329                                                                   khugepaged_scan.address,
2330                                                                   &mmap_locked,
2331                                                                   cc);
2332                         }
2333                         switch (*result) {
2334                         case SCAN_PTE_MAPPED_HUGEPAGE: {
2335                                 pmd_t *pmd;
2336
2337                                 *result = find_pmd_or_thp_or_none(mm,
2338                                                                   khugepaged_scan.address,
2339                                                                   &pmd);
2340                                 if (*result != SCAN_SUCCEED)
2341                                         break;
2342                                 if (!khugepaged_add_pte_mapped_thp(mm,
2343                                                                    khugepaged_scan.address))
2344                                         break;
2345                         } fallthrough;
2346                         case SCAN_SUCCEED:
2347                                 ++khugepaged_pages_collapsed;
2348                                 break;
2349                         default:
2350                                 break;
2351                         }
2352
2353                         /* move to next address */
2354                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2355                         progress += HPAGE_PMD_NR;
2356                         if (!mmap_locked)
2357                                 /*
2358                                  * We released mmap_lock so break loop.  Note
2359                                  * that we drop mmap_lock before all hugepage
2360                                  * allocations, so if allocation fails, we are
2361                                  * guaranteed to break here and report the
2362                                  * correct result back to caller.
2363                                  */
2364                                 goto breakouterloop_mmap_lock;
2365                         if (progress >= pages)
2366                                 goto breakouterloop;
2367                 }
2368         }
2369 breakouterloop:
2370         mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2371 breakouterloop_mmap_lock:
2372
2373         spin_lock(&khugepaged_mm_lock);
2374         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2375         /*
2376          * Release the current mm_slot if this mm is about to die, or
2377          * if we scanned all vmas of this mm.
2378          */
2379         if (hpage_collapse_test_exit(mm) || !vma) {
2380                 /*
2381                  * Make sure that if mm_users is reaching zero while
2382                  * khugepaged runs here, khugepaged_exit will find
2383                  * mm_slot not pointing to the exiting mm.
2384                  */
2385                 if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2386                         slot = list_entry(slot->mm_node.next,
2387                                           struct mm_slot, mm_node);
2388                         khugepaged_scan.mm_slot =
2389                                 mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2390                         khugepaged_scan.address = 0;
2391                 } else {
2392                         khugepaged_scan.mm_slot = NULL;
2393                         khugepaged_full_scans++;
2394                 }
2395
2396                 collect_mm_slot(mm_slot);
2397         }
2398
2399         return progress;
2400 }
2401
2402 static int khugepaged_has_work(void)
2403 {
2404         return !list_empty(&khugepaged_scan.mm_head) &&
2405                 hugepage_flags_enabled();
2406 }
2407
2408 static int khugepaged_wait_event(void)
2409 {
2410         return !list_empty(&khugepaged_scan.mm_head) ||
2411                 kthread_should_stop();
2412 }
2413
2414 static void khugepaged_do_scan(struct collapse_control *cc)
2415 {
2416         unsigned int progress = 0, pass_through_head = 0;
2417         unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2418         bool wait = true;
2419         int result = SCAN_SUCCEED;
2420
2421         lru_add_drain_all();
2422
2423         while (true) {
2424                 cond_resched();
2425
2426                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2427                         break;
2428
2429                 spin_lock(&khugepaged_mm_lock);
2430                 if (!khugepaged_scan.mm_slot)
2431                         pass_through_head++;
2432                 if (khugepaged_has_work() &&
2433                     pass_through_head < 2)
2434                         progress += khugepaged_scan_mm_slot(pages - progress,
2435                                                             &result, cc);
2436                 else
2437                         progress = pages;
2438                 spin_unlock(&khugepaged_mm_lock);
2439
2440                 if (progress >= pages)
2441                         break;
2442
2443                 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2444                         /*
2445                          * If fail to allocate the first time, try to sleep for
2446                          * a while.  When hit again, cancel the scan.
2447                          */
2448                         if (!wait)
2449                                 break;
2450                         wait = false;
2451                         khugepaged_alloc_sleep();
2452                 }
2453         }
2454 }
2455
2456 static bool khugepaged_should_wakeup(void)
2457 {
2458         return kthread_should_stop() ||
2459                time_after_eq(jiffies, khugepaged_sleep_expire);
2460 }
2461
2462 static void khugepaged_wait_work(void)
2463 {
2464         if (khugepaged_has_work()) {
2465                 const unsigned long scan_sleep_jiffies =
2466                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2467
2468                 if (!scan_sleep_jiffies)
2469                         return;
2470
2471                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2472                 wait_event_freezable_timeout(khugepaged_wait,
2473                                              khugepaged_should_wakeup(),
2474                                              scan_sleep_jiffies);
2475                 return;
2476         }
2477
2478         if (hugepage_flags_enabled())
2479                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2480 }
2481
2482 static int khugepaged(void *none)
2483 {
2484         struct khugepaged_mm_slot *mm_slot;
2485
2486         set_freezable();
2487         set_user_nice(current, MAX_NICE);
2488
2489         while (!kthread_should_stop()) {
2490                 khugepaged_do_scan(&khugepaged_collapse_control);
2491                 khugepaged_wait_work();
2492         }
2493
2494         spin_lock(&khugepaged_mm_lock);
2495         mm_slot = khugepaged_scan.mm_slot;
2496         khugepaged_scan.mm_slot = NULL;
2497         if (mm_slot)
2498                 collect_mm_slot(mm_slot);
2499         spin_unlock(&khugepaged_mm_lock);
2500         return 0;
2501 }
2502
2503 static void set_recommended_min_free_kbytes(void)
2504 {
2505         struct zone *zone;
2506         int nr_zones = 0;
2507         unsigned long recommended_min;
2508
2509         if (!hugepage_flags_enabled()) {
2510                 calculate_min_free_kbytes();
2511                 goto update_wmarks;
2512         }
2513
2514         for_each_populated_zone(zone) {
2515                 /*
2516                  * We don't need to worry about fragmentation of
2517                  * ZONE_MOVABLE since it only has movable pages.
2518                  */
2519                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2520                         continue;
2521
2522                 nr_zones++;
2523         }
2524
2525         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2526         recommended_min = pageblock_nr_pages * nr_zones * 2;
2527
2528         /*
2529          * Make sure that on average at least two pageblocks are almost free
2530          * of another type, one for a migratetype to fall back to and a
2531          * second to avoid subsequent fallbacks of other types There are 3
2532          * MIGRATE_TYPES we care about.
2533          */
2534         recommended_min += pageblock_nr_pages * nr_zones *
2535                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2536
2537         /* don't ever allow to reserve more than 5% of the lowmem */
2538         recommended_min = min(recommended_min,
2539                               (unsigned long) nr_free_buffer_pages() / 20);
2540         recommended_min <<= (PAGE_SHIFT-10);
2541
2542         if (recommended_min > min_free_kbytes) {
2543                 if (user_min_free_kbytes >= 0)
2544                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2545                                 min_free_kbytes, recommended_min);
2546
2547                 min_free_kbytes = recommended_min;
2548         }
2549
2550 update_wmarks:
2551         setup_per_zone_wmarks();
2552 }
2553
2554 int start_stop_khugepaged(void)
2555 {
2556         int err = 0;
2557
2558         mutex_lock(&khugepaged_mutex);
2559         if (hugepage_flags_enabled()) {
2560                 if (!khugepaged_thread)
2561                         khugepaged_thread = kthread_run(khugepaged, NULL,
2562                                                         "khugepaged");
2563                 if (IS_ERR(khugepaged_thread)) {
2564                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2565                         err = PTR_ERR(khugepaged_thread);
2566                         khugepaged_thread = NULL;
2567                         goto fail;
2568                 }
2569
2570                 if (!list_empty(&khugepaged_scan.mm_head))
2571                         wake_up_interruptible(&khugepaged_wait);
2572         } else if (khugepaged_thread) {
2573                 kthread_stop(khugepaged_thread);
2574                 khugepaged_thread = NULL;
2575         }
2576         set_recommended_min_free_kbytes();
2577 fail:
2578         mutex_unlock(&khugepaged_mutex);
2579         return err;
2580 }
2581
2582 void khugepaged_min_free_kbytes_update(void)
2583 {
2584         mutex_lock(&khugepaged_mutex);
2585         if (hugepage_flags_enabled() && khugepaged_thread)
2586                 set_recommended_min_free_kbytes();
2587         mutex_unlock(&khugepaged_mutex);
2588 }
2589
2590 static int madvise_collapse_errno(enum scan_result r)
2591 {
2592         /*
2593          * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2594          * actionable feedback to caller, so they may take an appropriate
2595          * fallback measure depending on the nature of the failure.
2596          */
2597         switch (r) {
2598         case SCAN_ALLOC_HUGE_PAGE_FAIL:
2599                 return -ENOMEM;
2600         case SCAN_CGROUP_CHARGE_FAIL:
2601                 return -EBUSY;
2602         /* Resource temporary unavailable - trying again might succeed */
2603         case SCAN_PAGE_LOCK:
2604         case SCAN_PAGE_LRU:
2605         case SCAN_DEL_PAGE_LRU:
2606                 return -EAGAIN;
2607         /*
2608          * Other: Trying again likely not to succeed / error intrinsic to
2609          * specified memory range. khugepaged likely won't be able to collapse
2610          * either.
2611          */
2612         default:
2613                 return -EINVAL;
2614         }
2615 }
2616
2617 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2618                      unsigned long start, unsigned long end)
2619 {
2620         struct collapse_control *cc;
2621         struct mm_struct *mm = vma->vm_mm;
2622         unsigned long hstart, hend, addr;
2623         int thps = 0, last_fail = SCAN_FAIL;
2624         bool mmap_locked = true;
2625
2626         BUG_ON(vma->vm_start > start);
2627         BUG_ON(vma->vm_end < end);
2628
2629         *prev = vma;
2630
2631         if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2632                 return -EINVAL;
2633
2634         cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2635         if (!cc)
2636                 return -ENOMEM;
2637         cc->is_khugepaged = false;
2638
2639         mmgrab(mm);
2640         lru_add_drain_all();
2641
2642         hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2643         hend = end & HPAGE_PMD_MASK;
2644
2645         for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2646                 int result = SCAN_FAIL;
2647
2648                 if (!mmap_locked) {
2649                         cond_resched();
2650                         mmap_read_lock(mm);
2651                         mmap_locked = true;
2652                         result = hugepage_vma_revalidate(mm, addr, false, &vma,
2653                                                          cc);
2654                         if (result  != SCAN_SUCCEED) {
2655                                 last_fail = result;
2656                                 goto out_nolock;
2657                         }
2658
2659                         hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2660                 }
2661                 mmap_assert_locked(mm);
2662                 memset(cc->node_load, 0, sizeof(cc->node_load));
2663                 nodes_clear(cc->alloc_nmask);
2664                 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2665                         struct file *file = get_file(vma->vm_file);
2666                         pgoff_t pgoff = linear_page_index(vma, addr);
2667
2668                         mmap_read_unlock(mm);
2669                         mmap_locked = false;
2670                         result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2671                                                           cc);
2672                         fput(file);
2673                 } else {
2674                         result = hpage_collapse_scan_pmd(mm, vma, addr,
2675                                                          &mmap_locked, cc);
2676                 }
2677                 if (!mmap_locked)
2678                         *prev = NULL;  /* Tell caller we dropped mmap_lock */
2679
2680 handle_result:
2681                 switch (result) {
2682                 case SCAN_SUCCEED:
2683                 case SCAN_PMD_MAPPED:
2684                         ++thps;
2685                         break;
2686                 case SCAN_PTE_MAPPED_HUGEPAGE:
2687                         BUG_ON(mmap_locked);
2688                         BUG_ON(*prev);
2689                         mmap_write_lock(mm);
2690                         result = collapse_pte_mapped_thp(mm, addr, true);
2691                         mmap_write_unlock(mm);
2692                         goto handle_result;
2693                 /* Whitelisted set of results where continuing OK */
2694                 case SCAN_PMD_NULL:
2695                 case SCAN_PTE_NON_PRESENT:
2696                 case SCAN_PTE_UFFD_WP:
2697                 case SCAN_PAGE_RO:
2698                 case SCAN_LACK_REFERENCED_PAGE:
2699                 case SCAN_PAGE_NULL:
2700                 case SCAN_PAGE_COUNT:
2701                 case SCAN_PAGE_LOCK:
2702                 case SCAN_PAGE_COMPOUND:
2703                 case SCAN_PAGE_LRU:
2704                 case SCAN_DEL_PAGE_LRU:
2705                         last_fail = result;
2706                         break;
2707                 default:
2708                         last_fail = result;
2709                         /* Other error, exit */
2710                         goto out_maybelock;
2711                 }
2712         }
2713
2714 out_maybelock:
2715         /* Caller expects us to hold mmap_lock on return */
2716         if (!mmap_locked)
2717                 mmap_read_lock(mm);
2718 out_nolock:
2719         mmap_assert_locked(mm);
2720         mmdrop(mm);
2721         kfree(cc);
2722
2723         return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2724                         : madvise_collapse_errno(last_fail);
2725 }