For some sev ioctl interfaces, input may be passed that is less than or
equal to SEV_FW_BLOB_MAX_SIZE, but larger than the data that PSP
firmware returns. In this case, kmalloc will allocate memory that is the
size of the input rather than the size of the data. Since PSP firmware
doesn't fully overwrite the buffer, the sev ioctl interfaces with the
issue may return uninitialized slab memory.
Currently, all of the ioctl interfaces in the ccp driver are safe, but
to prevent future problems, change all ioctl interfaces that allocate
memory with kmalloc to use kzalloc and memset the data buffer to zero
in sev_ioctl_do_platform_status.
Fixes: c9a292daea55 ("crypto: ccp: Use the stack and common buffer for status commands") Fixes: 98298cc8e7162 ("crypto: ccp: Implement SEV_PEK_CSR ioctl command") Fixes: 83c3fc3c72095 ("crypto: ccp: Implement SEV_PDH_CERT_EXPORT ioctl command") Fixes: 7d79c4402d1d9 ("crypto: ccp - introduce SEV_GET_ID2 command") Cc: stable@vger.kernel.org Reported-by: Andy Nguyen <theflow@google.com> Suggested-by: David Rientjes <rientjes@google.com> Suggested-by: Peter Gonda <pgonda@google.com> Signed-off-by: John Allen <john.allen@amd.com> Reviewed-by: Peter Gonda <pgonda@google.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Unlike other copying operations on ITER_PIPE, copy_mc_to_iter() can
result in a short copy. In that case we need to trim the unused
buffers, as well as the length of partially filled one - it's not
enough to set ->head, ->iov_offset and ->count to reflect how
much had we copied. Not hard to fix, fortunately...
I'd put a helper (pipe_discard_from(pipe, head)) into pipe_fs_i.h,
rather than iov_iter.c - it has nothing to do with iov_iter and
having it will allow us to avoid an ugly kludge in fs/splice.c.
We could put it into lib/iov_iter.c for now and move it later,
but I don't see the point going that way...
Cc: stable@kernel.org # 4.19+ Fixes: b796fdde4bdf "lib/iov_iter: Fix pipe handling in _copy_to_iter_mcsafe()" Reviewed-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
usbnet uses the work usbnet_deferred_kevent() to perform tasks which may
sleep. On disconnect, completion of the work was originally awaited in
->ndo_stop(). But in 2003, that was moved to ->disconnect() by historic
commit "[PATCH] USB: usbnet, prevent exotic rtnl deadlock":
The change was made because back then, the kernel's workqueue
implementation did not allow waiting for a single work. One had to wait
for completion of *all* work by calling flush_scheduled_work(), and that
could deadlock when waiting for usbnet_deferred_kevent() with rtnl_mutex
held in ->ndo_stop().
The commit solved one problem but created another: It causes a
use-after-free in USB Ethernet drivers aqc111.c, asix_devices.c,
ax88179_178a.c, ch9200.c and smsc75xx.c:
* If the drivers receive a link change interrupt immediately before
disconnect, they raise EVENT_LINK_RESET in their (non-sleepable)
->status() callback and schedule usbnet_deferred_kevent().
* usbnet_deferred_kevent() invokes the driver's ->link_reset() callback,
which calls netif_carrier_{on,off}().
* That in turn schedules the work linkwatch_event().
Because usbnet_deferred_kevent() is awaited after unregister_netdev(),
netif_carrier_{on,off}() may operate on an unregistered netdev and
linkwatch_event() may run after free_netdev(), causing a use-after-free.
In 2010, usbnet was changed to only wait for a single instance of
usbnet_deferred_kevent() instead of *all* work by commit b489eba7fc5c
("drivers/net: don't use flush_scheduled_work()").
Unfortunately the commit neglected to move the wait back to
->ndo_stop(). Rectify that omission at long last.
There is no need to directly skip over to the SCROLL_REDRAW case while
the logo is still shown.
When using DRM, this change has no effect because the code will reach
the SCROLL_REDRAW case immediately anyway.
But if you run an accelerated fbdev driver and have
FRAMEBUFFER_CONSOLE_LEGACY_ACCELERATION enabled, console scrolling is
slowed down by factors so that it feels as if you use a 9600 baud
terminal.
So, drop those unnecessary checks and speed up fbdev console
acceleration during bootup.
The user may use the fbcon=vc:<n1>-<n2> option to tell fbcon to take
over the given range (n1...n2) of consoles. The value for n1 and n2
needs to be a positive number and up to (MAX_NR_CONSOLES - 1).
The given values were not fully checked against those boundaries yet.
To fix the issue, convert first_fb_vc and last_fb_vc to unsigned
integers and check them against the upper boundary, and make sure that
first_fb_vc is smaller than last_fb_vc.
If cooling_device_stats_setup() fails to create the stats object, it
must clear the last slot in cooling_device_attr_groups that was
initially empty (so as to make it possible to add stats attributes to
the cooling device attribute groups).
Failing to do so may cause the stats attributes to be created by
mistake for a device that doesn't have a stats object, because the
slot in question might be populated previously during the registration
of another cooling device.
Fixes: 9db8901ea0af ("thermal: Add cooling device's statistics in sysfs") Reported-by: Di Shen <di.shen@unisoc.com> Tested-by: Di Shen <di.shen@unisoc.com> Cc: 4.17+ <stable@vger.kernel.org> # 4.17+ Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
All creation paths except for O_TMPFILE handle umask in the vfs directly
if the filesystem doesn't support or enable POSIX ACLs. If the filesystem
does then umask handling is deferred until posix_acl_create().
Because, O_TMPFILE misses umask handling in the vfs it will not honor
umask settings. Fix this by adding the missing umask handling.
Link: https://lore.kernel.org/r/1657779088-2242-2-git-send-email-xuyang2018.jy@fujitsu.com Fixes: ef81791ba709 ("[O_TMPFILE] it's still short a few helpers, but infrastructure should be OK now...") Cc: <stable@vger.kernel.org> # 4.19+ Reported-by: Christian Brauner (Microsoft) <brauner@kernel.org> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-and-Tested-by: Jeff Layton <jlayton@kernel.org> Acked-by: Christian Brauner (Microsoft) <brauner@kernel.org> Signed-off-by: Yang Xu <xuyang2018.jy@fujitsu.com> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If something manages to set the maximum file size to MAX_OFFSET+1, this
can cause the xfs and ext4 filesystems at least to become corrupt.
Ordinarily, the kernel protects against userspace trying this by
checking the value early in the truncate() and ftruncate() system calls
calls - but there are at least two places that this check is bypassed:
(1) Cachefiles will round up the EOF of the backing file to DIO block
size so as to allow DIO on the final block - but this might push
the offset negative. It then calls notify_change(), but this
inadvertently bypasses the checking. This can be triggered if
someone puts an 8EiB-1 file on a server for someone else to try and
access by, say, nfs.
(2) ksmbd doesn't check the value it is given in set_end_of_file_info()
and then calls vfs_truncate() directly - which also bypasses the
check.
In both cases, it is potentially possible for a network filesystem to
cause a disk filesystem to be corrupted: cachefiles in the client's
cache filesystem; ksmbd in the server's filesystem.
nfsd is okay as it checks the value, but we can then remove this check
too.
Fix this by adding a check to inode_newsize_ok(), as called from
setattr_prepare(), thereby catching the issue as filesystems set up to
perform the truncate with minimal opportunity for bypassing the new
check.
Fixes: eed34cba8a1f ("cachefiles: Implement backing file wrangling") Fixes: 9be54045676d ("cifsd: add file operations") Signed-off-by: David Howells <dhowells@redhat.com> Reported-by: Jeff Layton <jlayton@kernel.org> Tested-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Namjae Jeon <linkinjeon@kernel.org> Cc: stable@kernel.org Acked-by: Alexander Viro <viro@zeniv.linux.org.uk>
cc: Steve French <sfrench@samba.org>
cc: Hyunchul Lee <hyc.lee@gmail.com>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Dave Wysochanski <dwysocha@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There is another Asus K42JZ model with the PCI SSID 1043:1313
that requires the quirk ALC269VB_FIXUP_ASUS_MIC_NO_PRESENCE.
Add the corresponding entry to the quirk table.
The 12,1 model requires the same configuration as the 12,2 model
to enable headphones but has a different codec SSID. Adds
12,1 SSID for matching quirk.
There is another LENOVO 20149 (Type1Sku0) Notebook model with
CX20590, the device PCI SSID is 17aa:3977, which headphones are
not responding, that requires the quirk CXT_PINCFG_LENOVO_NOTEBOOK.
Add the corresponding entry to the quirk table.
Set pm_power_off to NULL like on all other architectures, check if it
is set in machine_halt() and machine_power_off() and fallback to
default_power_off if no other power driver got registered.
This brings riscv architecture inline with all other architectures,
and allows to reuse exiting power drivers unmodified.
Kernels without legacy SBI v0.1 extensions (CONFIG_RISCV_SBI_V01 is
not set), do not set pm_power_off to sbi_shutdown(). There is no
support for SBI v0.3 system reset extension either. This prevents
using gpio_poweroff on SiFive HiFive Unmatched.
Tested on SiFive HiFive unmatched, with a dtb specifying gpio-poweroff
node and kernel complied without CONFIG_RISCV_SBI_V01.
Commit a4317b8a36c4 ("KVM: x86: Fix recording of guest steal time
/ preempted status", 2021-11-11) open coded the previous call to
kvm_map_gfn, but in doing so it dropped the comparison between the cached
guest physical address and the one in the MSR. This cause an incorrect
cache hit if the guest modifies the steal time address while the memslots
remain the same. This can happen with kexec, in which case the steal
time data is written at the address used by the old kernel instead of
the old one.
While at it, rename the variable from gfn to gpa since it is a plain
physical address and not a right-shifted one.
Reported-by: Dave Young <ruyang@redhat.com> Reported-by: Xiaoying Yan <yiyan@redhat.com> Analyzed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: stable@vger.kernel.org Fixes: a4317b8a36c4 ("KVM: x86: Fix recording of guest steal time / preempted status") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit a4317b8a36c4 ("KVM: x86: Fix recording of guest steal time
/ preempted status", 2021-11-11) open coded the previous call to
kvm_map_gfn, but in doing so it dropped the comparison between the cached
guest physical address and the one in the MSR. This cause an incorrect
cache hit if the guest modifies the steal time address while the memslots
remain the same. This can happen with kexec, in which case the preempted
bit is written at the address used by the old kernel instead of
the old one.
Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: stable@vger.kernel.org Fixes: a4317b8a36c4 ("KVM: x86: Fix recording of guest steal time / preempted status") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Mark kvm_mmu_x86_module_init() with __init, the entire reason it exists
is to initialize variables when kvm.ko is loaded, i.e. it must never be
called after module initialization.
Fixes: 335aa133e6a5 ("KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded") Cc: stable@vger.kernel.org Reviewed-by: Kai Huang <kai.huang@intel.com> Tested-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220803224957.1285926-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Windows 10/11 guests with Hyper-V role (WSL2) enabled are observed to
hang upon boot or shortly after when a non-default TSC frequency was
set for L1. The issue is observed on a host where TSC scaling is
supported. The problem appears to be that Windows doesn't use TSC
scaling for its guests, even when the feature is advertised, and KVM
filters SECONDARY_EXEC_TSC_SCALING out when creating L2 controls from
L1's VMCS. This leads to L2 running with the default frequency (matching
host's) while L1 is running with an altered one.
Keep SECONDARY_EXEC_TSC_SCALING in secondary exec controls for L2 when
it was set for L1. TSC_MULTIPLIER is already correctly computed and
written by prepare_vmcs02().
When injecting a #GP on LLDT/LTR due to a non-canonical LDT/TSS base, set
the error code to the selector. Intel SDM's says nothing about the #GP,
but AMD's APM explicitly states that both LLDT and LTR set the error code
to the selector, not zero.
Note, a non-canonical memory operand on LLDT/LTR does generate a #GP(0),
but the KVM code in question is specific to the base from the descriptor.
Fixes: 2268660cef03 ("KVM: x86: Emulator ignores LDTR/TR extended base on LLDT/LTR") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20220711232750.1092012-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Wait to mark the TSS as busy during LTR emulation until after all fault
checks for the LTR have passed. Specifically, don't mark the TSS busy if
the new TSS base is non-canonical.
Opportunistically drop the one-off !seg_desc.PRESENT check for TR as the
only reason for the early check was to avoid marking a !PRESENT TSS as
busy, i.e. the common !PRESENT is now done before setting the busy bit.
Inject a #UD if L1 attempts VMXON with a CR0 or CR4 that is disallowed
per the associated nested VMX MSRs' fixed0/1 settings. KVM cannot rely
on hardware to perform the checks, even for the few checks that have
higher priority than VM-Exit, as (a) KVM may have forced CR0/CR4 bits in
hardware while running the guest, (b) there may incompatible CR0/CR4 bits
that have lower priority than VM-Exit, e.g. CR0.NE, and (c) userspace may
have further restricted the allowed CR0/CR4 values by manipulating the
guest's nested VMX MSRs.
Note, despite a very strong desire to throw shade at Jim, commit 0025faf79e9a ("kvm: nVMX: Remove superfluous VMX instruction fault checks")
is not to blame for the buggy behavior (though the comment...). That
commit only removed the CR0.PE, EFLAGS.VM, and COMPATIBILITY mode checks
(though it did erroneously drop the CPL check, but that has already been
remedied). KVM may force CR0.PE=1, but will do so only when also
forcing EFLAGS.VM=1 to emulate Real Mode, i.e. hardware will still #UD.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216033 Fixes: 1eb91cc48533 ("KVM: nVMX: Implement VMXON and VMXOFF") Reported-by: Eric Li <ercli@ucdavis.edu> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Check that the guest (L2) and host (L1) CR4 values that would be loaded
by nested VM-Enter and VM-Exit respectively are valid with respect to
KVM's (L0 host) allowed CR4 bits. Failure to check KVM reserved bits
would allow L1 to load an illegal CR4 (or trigger hardware VM-Fail or
failed VM-Entry) by massaging guest CPUID to allow features that are not
supported by KVM. Amusingly, KVM itself is an accomplice in its doom, as
KVM adjusts L1's MSR_IA32_VMX_CR4_FIXED1 to allow L1 to enable bits for
L2 based on L1's CPUID model.
Note, although nested_{guest,host}_cr4_valid() are _currently_ used if
and only if the vCPU is post-VMXON (nested.vmxon == true), that may not
be true in the future, e.g. emulating VMXON has a bug where it doesn't
check the allowed/required CR0/CR4 bits.
Cc: stable@vger.kernel.org Fixes: 3ce5a61d0f22 ("KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation") Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Restrict the nVMX MSRs based on KVM's config, not based on the guest's
current config. Using the guest's config to audit the new config
prevents userspace from restoring the original config (KVM's config) if
at any point in the past the guest's config was restricted in any way.
Fixes: 651c35318378 ("KVM: nVMX: support restore of VMX capability MSRs") Cc: stable@vger.kernel.org Cc: David Matlack <dmatlack@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Split the common x86 parts of kvm_is_valid_cr4(), i.e. the reserved bits
checks, into a separate helper, __kvm_is_valid_cr4(), and export only the
inner helper to vendor code in order to prevent nested VMX from calling
back into vmx_is_valid_cr4() via kvm_is_valid_cr4().
On SVM, this is a nop as SVM doesn't place any additional restrictions on
CR4.
On VMX, this is also currently a nop, but only because nested VMX is
missing checks on reserved CR4 bits for nested VM-Enter. That bug will
be fixed in a future patch, and could simply use kvm_is_valid_cr4() as-is,
but nVMX has _another_ bug where VMXON emulation doesn't enforce VMX's
restrictions on CR0/CR4. The cleanest and most intuitive way to fix the
VMXON bug is to use nested_host_cr{0,4}_valid(). If the CR4 variant
routes through kvm_is_valid_cr4(), using nested_host_cr4_valid() won't do
the right thing for the VMXON case as vmx_is_valid_cr4() enforces VMX's
restrictions if and only if the vCPU is post-VMXON.
Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When the SIGP interpretation facility is present and a VCPU sends an
ecall to another VCPU in enabled wait, the sending VCPU receives a 56
intercept (partial execution), so KVM can wake up the receiving CPU.
Note that the SIGP interpretation facility will take care of the
interrupt delivery and KVM's only job is to wake the receiving VCPU.
For PV, the sending VCPU will receive a 108 intercept (pv notify) and
should continue like in the non-PV case, i.e. wake the receiving VCPU.
For PV and non-PV guests the interrupt delivery will occur through the
SIGP interpretation facility on SIE entry when SIE finds the X bit in
the status field set.
However, in handle_pv_notification(), there was no special handling for
SIGP, which leads to interrupt injection being requested by KVM for the
next SIE entry. This results in the interrupt being delivered twice:
once by the SIGP interpretation facility and once by KVM through the
IICTL.
Add the necessary special handling in handle_pv_notification(), similar
to handle_partial_execution(), which simply wakes the receiving VCPU and
leave interrupt delivery to the SIGP interpretation facility.
In contrast to external calls, emergency calls are not interpreted but
also cause a 108 intercept, which is why we still need to call
handle_instruction() for SIGP orders other than ecall.
Since kvm_s390_handle_sigp_pei() is now called for all SIGP orders which
cause a 108 intercept - even if they are actually handled by
handle_instruction() - move the tracepoint in kvm_s390_handle_sigp_pei()
to avoid possibly confusing trace messages.
Don't BUG/WARN on interrupt injection due to GIF being cleared,
since it's trivial for userspace to force the situation via
KVM_SET_VCPU_EVENTS (even if having at least a WARN there would be correct
for KVM internally generated injections).
If a nested run isn't pending, snapshot vmcs01.GUEST_IA32_DEBUGCTL
irrespective of whether or not VM_ENTRY_LOAD_DEBUG_CONTROLS is set in
vmcs12. When restoring nested state, e.g. after migration, without a
nested run pending, prepare_vmcs02() will propagate
nested.vmcs01_debugctl to vmcs02, i.e. will load garbage/zeros into
vmcs02.GUEST_IA32_DEBUGCTL.
If userspace restores nested state before MSRs, then loading garbage is a
non-issue as loading DEBUGCTL will also update vmcs02. But if usersepace
restores MSRs first, then KVM is responsible for propagating L2's value,
which is actually thrown into vmcs01, into vmcs02.
Restoring L2 MSRs into vmcs01, i.e. loading all MSRs before nested state
is all kinds of bizarre and ideally would not be supported. Sadly, some
VMMs do exactly that and rely on KVM to make things work.
Note, there's still a lurking SMM bug, as propagating vmcs01's DEBUGCTL
to vmcs02 across RSM may corrupt L2's DEBUGCTL. But KVM's entire VMX+SMM
emulation is flawed as SMI+RSM should not toouch _any_ VMCS when use the
"default treatment of SMIs", i.e. when not using an SMI Transfer Monitor.
If a nested run isn't pending, snapshot vmcs01.GUEST_BNDCFGS irrespective
of whether or not VM_ENTRY_LOAD_BNDCFGS is set in vmcs12. When restoring
nested state, e.g. after migration, without a nested run pending,
prepare_vmcs02() will propagate nested.vmcs01_guest_bndcfgs to vmcs02,
i.e. will load garbage/zeros into vmcs02.GUEST_BNDCFGS.
If userspace restores nested state before MSRs, then loading garbage is a
non-issue as loading BNDCFGS will also update vmcs02. But if usersepace
restores MSRs first, then KVM is responsible for propagating L2's value,
which is actually thrown into vmcs01, into vmcs02.
Restoring L2 MSRs into vmcs01, i.e. loading all MSRs before nested state
is all kinds of bizarre and ideally would not be supported. Sadly, some
VMMs do exactly that and rely on KVM to make things work.
Note, there's still a lurking SMM bug, as propagating vmcs01.GUEST_BNDFGS
to vmcs02 across RSM may corrupt L2's BNDCFGS. But KVM's entire VMX+SMM
emulation is flawed as SMI+RSM should not toouch _any_ VMCS when use the
"default treatment of SMIs", i.e. when not using an SMI Transfer Monitor.
Link: https://lore.kernel.org/all/Yobt1XwOfb5M6Dfa@google.com Fixes: b66b5e1011af ("KVM: nVMX: Fix emulation of VM_ENTRY_LOAD_BNDCFGS") Cc: stable@vger.kernel.org Cc: Lei Wang <lei4.wang@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614215831.3762138-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Touch switch state is received through WACOM_PAD_FIELD. However, it
is reported by touch_input. Don't register pad_input if no other pad
events require the interface.
The generic routine, wacom_wac_pen_event, turns rotation value 90
degree anti-clockwise before posting the events. This non-zero
event trggers a non-zero ABS_Z event for non art pen tools. However,
HID_DG_TWIST is only supported by art pen.
Similar to the Surface Go (1), the (Elantech) touchscreen/digitizer in
the Surface Go 2 mistakenly reports the battery of the stylus. Instead
of over the touchscreen device, battery information is provided via
bluetooth and the touchscreen device reports an empty battery.
Apply the HID_BATTERY_QUIRK_IGNORE quirk to ignore this battery and
prevent the erroneous low battery warnings.
lockd doesn't currently vet the start and length in nlm4 requests like
it should, and can end up generating lock requests with arguments that
overflow when passed to the filesystem.
The NLM4 protocol uses unsigned 64-bit arguments for both start and
length, whereas struct file_lock tracks the start and end as loff_t
values. By the time we get around to calling nlm4svc_retrieve_args,
we've lost the information that would allow us to determine if there was
an overflow.
Start tracking the actual start and len for NLM4 requests in the
nlm_lock. In nlm4svc_retrieve_args, vet these values to ensure they
won't cause an overflow, and return NLM4_FBIG if they do.
Link: https://bugzilla.linux-nfs.org/show_bug.cgi?id=392 Reported-by: Jan Kasiak <j.kasiak@gmail.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Cc: <stable@vger.kernel.org> # 5.14+ Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Neither wait_on_buffer nor buffer_uptodate contain any memory barrier.
Consequently, if someone calls sb_bread and then reads the buffer data,
the read of buffer data may be executed before wait_on_buffer(bh) on
architectures with weak memory ordering and it may return invalid data.
Fix this bug by adding a memory barrier to set_buffer_uptodate and an
acquire barrier to buffer_uptodate (in a similar way as
folio_test_uptodate and folio_mark_uptodate).
We won't really have enough skbs to need a 64-bit cookie,
and on 32-bit platforms storing the 64-bit cookie into the
void *rate_driver_data doesn't work anyway. Switch back to
using just a 32-bit cookie and uintptr_t for the type to
avoid compiler warnings about all this.
Fixes: 2e05bcefd0a8 ("wifi: mac80211_hwsim: fix race condition in pending packet") Signed-off-by: Johannes Berg <johannes.berg@intel.com> Cc: Jeongik Cha <jeongik@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We had a report from the spring Bake-a-thon of data corruption in some
nfstest_interop tests. Looking at the traces showed the NFS server
allowing a v3 WRITE to proceed while a read delegation was still
outstanding.
Currently, we only set NFSD_FILE_BREAK_* flags if
NFSD_MAY_NOT_BREAK_LEASE was set when we call nfsd_file_alloc.
NFSD_MAY_NOT_BREAK_LEASE was intended to be set when finding files for
COMMIT ops, where we need a writeable filehandle but don't need to
break read leases.
It doesn't make any sense to consult that flag when allocating a file
since the file may be used on subsequent calls where we do want to break
the lease (and the usage of it here seems to be reverse from what it
should be anyway).
Also, after calling nfsd_open_break_lease, we don't want to clear the
BREAK_* bits. A lease could end up being set on it later (more than
once) and we need to be able to break those leases as well.
This means that the NFSD_FILE_BREAK_* flags now just mirror
NFSD_MAY_{READ,WRITE} flags, so there's no need for them at all. Just
drop those flags and unconditionally call nfsd_open_break_lease every
time.
Reported-by: Olga Kornieskaia <kolga@netapp.com> Link: https://bugzilla.redhat.com/show_bug.cgi?id=2107360 Fixes: a8d3d8b807d4 (nfsd: add a new struct file caching facility to nfsd) Cc: <stable@vger.kernel.org> # 5.4.x : 3cb992cbbe0c NFSD: Clean up the show_nf_flags() macro Cc: <stable@vger.kernel.org> # 5.4.x Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The RPC/RDMA driver will return -EPROTO and -ENODEV as connection errors
under certain circumstances. Make sure that we handle them and report
them to the server. If not, we can end up cycling forever in a
LAYOUTGET/LAYOUTRETURN loop.
Fixes: e557d83849e6 ("NFSv4/pNFS: Use connections to a DS that are all of the same protocol family") Cc: stable@vger.kernel.org # 5.11.x Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit 6d0b3ac771433772dbdef0a19b865d6f33dc1c71.
If a transport is down, then we want to fail over to other transports if
they are listed in the GETDEVICEINFO reply.
Fixes: 6d0b3ac77143 ("pNFS: nfs3_set_ds_client should set NFS_CS_NOPING") Cc: stable@vger.kernel.org # 5.11.x Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Users of GNU ld (BFD) from binutils 2.39+ will observe multiple
instances of a new warning when linking kernels in the form:
ld: warning: arch/x86/boot/pmjump.o: missing .note.GNU-stack section implies executable stack
ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
ld: warning: arch/x86/boot/compressed/vmlinux has a LOAD segment with RWX permissions
Generally, we would like to avoid the stack being executable. Because
there could be a need for the stack to be executable, assembler sources
have to opt-in to this security feature via explicit creation of the
.note.GNU-stack feature (which compilers create by default) or command
line flag --noexecstack. Or we can simply tell the linker the
production of such sections is irrelevant and to link the stack as
--noexecstack.
LLVM's LLD linker defaults to -z noexecstack, so this flag isn't
strictly necessary when linking with LLD, only BFD, but it doesn't hurt
to be explicit here for all linkers IMO. --no-warn-rwx-segments is
currently BFD specific and only available in the current latest release,
so it's wrapped in an ld-option check.
While the kernel makes extensive usage of ELF sections, it doesn't use
permissions from ELF segments.
Users of GNU ld (BFD) from binutils 2.39+ will observe multiple
instances of a new warning when linking kernels in the form:
ld: warning: vmlinux: missing .note.GNU-stack section implies executable stack
ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
ld: warning: vmlinux has a LOAD segment with RWX permissions
Generally, we would like to avoid the stack being executable. Because
there could be a need for the stack to be executable, assembler sources
have to opt-in to this security feature via explicit creation of the
.note.GNU-stack feature (which compilers create by default) or command
line flag --noexecstack. Or we can simply tell the linker the
production of such sections is irrelevant and to link the stack as
--noexecstack.
LLVM's LLD linker defaults to -z noexecstack, so this flag isn't
strictly necessary when linking with LLD, only BFD, but it doesn't hurt
to be explicit here for all linkers IMO. --no-warn-rwx-segments is
currently BFD specific and only available in the current latest release,
so it's wrapped in an ld-option check.
While the kernel makes extensive usage of ELF sections, it doesn't use
permissions from ELF segments.
RSB fill sequence does not have any protection for miss-prediction of
conditional branch at the end of the sequence. CPU can speculatively
execute code immediately after the sequence, while RSB filling hasn't
completed yet.
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
In do_adb_query() function of drivers/macintosh/adb.c, req->data is copied
form userland. The parameter "req->data[2]" is missing check, the array
size of adb_handler[] is 16, so adb_handler[req->data[2]].original_address and
adb_handler[req->data[2]].handler_id will lead to oob read.
Cc: stable <stable@kernel.org> Signed-off-by: Ning Qiang <sohu0106@126.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220713153734.2248-1-sohu0106@126.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The BCM4349B1, aka CYW/BCM89359, is a WiFi+BT chip and its Bluetooth
portion can be controlled over serial.
Two subversions are added for the chip, because ROM firmware reports
002.002.013 (at least for the chips I have here), while depending on
patchram firmware revision, either 002.002.013 or 002.002.014 is
reported.
We use btrfs_zoned_data_reloc_{lock,unlock} to allow only one process to
write out to the relocation inode. That critical section must include all
the IO submission for the inode. However, flush_write_bio() in
extent_writepages() is out of the critical section, causing an IO
submission outside of the lock. This leads to an out of the order IO
submission and fail the relocation process.
Fix it by extending the critical section.
Fixes: 5ec7c05c9358 ("btrfs: zoned: only allow one process to add pages to a relocation inode") CC: stable@vger.kernel.org # 5.16+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The IO errors occur when we allocate a regular extent in previous data
relocation block group.
On zoned btrfs, we use a dedicated block group to relocate a data
extent. Thus, we allocate relocating data extents (pre-alloc) only from
the dedicated block group and vice versa. Once the free space in the
dedicated block group gets tight, a relocating extent may not fit into
the block group. In that case, we need to switch the dedicated block
group to the next one. Then, the previous one is now freed up for
allocating a regular extent. The BG is already not enough to allocate
the relocating extent, but there is still room to allocate a smaller
extent. Now the problem happens. By allocating a regular extent while
nocow IOs for the relocation is still on-going, we will issue WRITE IOs
(for relocation) and ZONE APPEND IOs (for the regular writes) at the
same time. That mixed IOs confuses the write pointer and arises the
unaligned write errors.
This commit introduces a new bit 'zoned_data_reloc_ongoing' to the
btrfs_block_group. We set this bit before releasing the dedicated block
group, and no extent are allocated from a block group having this bit
set. This bit is similar to setting block_group->ro, but is different from
it by allowing nocow writes to start.
Once all the nocow IO for relocation is done (hooked from
btrfs_finish_ordered_io), we reset the bit to release the block group for
further allocation.
Fixes: baba414833e7 ("btrfs: zoned: add a dedicated data relocation block group") CC: stable@vger.kernel.org # 5.16+ Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ This issue was fixed upstream by accident in 4da5f77dacaa ("arm64:
head: cover entire kernel image in initial ID map") as part of a
large refactoring of the arm64 boot flow. This simple fix is therefore
preferred for -stable backporting ]
On a system that implements FEAT_EPAN, read/write access to the idmap
is denied because UXN is not set on the swapper PTEs. As a result,
idmap_kpti_install_ng_mappings panics the kernel when accessing
__idmap_kpti_flag. Fix it by setting UXN on these PTEs.
The selftests, when built with newer versions of clang, is found
to have over optimized guests' ucall() function, and eliminating
the stores for uc.cmd (perhaps due to no immediate readers). This
resulted in the userspace side always reading a value of '0', and
causing multiple test failures.
As a result, prevent the compiler from optimizing the stores in
ucall() with WRITE_ONCE().
Suggested-by: Ricardo Koller <ricarkol@google.com> Suggested-by: Reiji Watanabe <reijiw@google.com> Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Message-Id: <20220615185706.1099208-1-rananta@google.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
Instead of printing an error message, kvm_stat script fails when we
restrict statistics to a guest by its name and there are multiple guests
with such name:
# kvm_stat -g my_vm
Traceback (most recent call last):
File "/usr/bin/kvm_stat", line 1819, in <module>
main()
File "/usr/bin/kvm_stat", line 1779, in main
options = get_options()
File "/usr/bin/kvm_stat", line 1718, in get_options
options = argparser.parse_args()
File "/usr/lib64/python3.10/argparse.py", line 1825, in parse_args
args, argv = self.parse_known_args(args, namespace)
File "/usr/lib64/python3.10/argparse.py", line 1858, in parse_known_args
namespace, args = self._parse_known_args(args, namespace)
File "/usr/lib64/python3.10/argparse.py", line 2067, in _parse_known_args
start_index = consume_optional(start_index)
File "/usr/lib64/python3.10/argparse.py", line 2007, in consume_optional
take_action(action, args, option_string)
File "/usr/lib64/python3.10/argparse.py", line 1935, in take_action
action(self, namespace, argument_values, option_string)
File "/usr/bin/kvm_stat", line 1649, in __call__
' to specify the desired pid'.format(" ".join(pids)))
TypeError: sequence item 0: expected str instance, int found
To avoid this, it's needed to convert pids int values to strings before
pass them to join().
hyperv_clock doesn't always give a stable test result, especially with
AMD CPUs. The test compares Hyper-V MSR clocksource (acquired either
with rdmsr() from within the guest or KVM_GET_MSRS from the host)
against rdtsc(). To increase the accuracy, increase the measured delay
(done with nop loop) by two orders of magnitude and take the mean rdtsc()
value before and after rdmsr()/KVM_GET_MSRS.
Similar to the Xen path, only change the vCPU's reported state if the vCPU
was actually preempted. The reason for KVM's behavior is that for example
optimistic spinning might not be a good idea if the guest is doing repeated
exits to userspace; however, it is confusing and unlikely to make a difference,
because well-tuned guests will hardly ever exit KVM_RUN in the first place.
Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access. A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.
To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary. A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.
It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed. However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses. Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.
The root cause of the bug sits in neon_poly1305_blocks. The logic
neon_poly1305_blocks() performed is that if it was called with both s[]
and r[] uninitialized, it will first try to initialize them with the
data from the first "block" that it believed to be 32 bytes in length.
First 16 bytes are used as the key and the next 16 bytes for s[]. This
would lead to the aforementioned read out-of-bound. However, after
calling poly1305_init_arch(), only 16 bytes were deducted from the input
and s[] is initialized yet again with the following 16 bytes. The second
initialization of s[] is certainly redundent which indicates that the
first initialization should be for r[] only.
This patch fixes the issue by calling poly1305_init_arm64() instead of
poly1305_init_arch(). This is also the implementation for the same
algorithm on arm platform.
The fix in commit 5debc80f12d4 ("ACPI/APEI: Limit printable size of BERT
table data") does not work as intended on systems where the BIOS has a
fixed size block of memory for the BERT table, relying on s/w to quit
when it finds a record with estatus->block_status == 0. On these systems
all errors are suppressed because the check:
if (region_len < ACPI_BERT_PRINT_MAX_LEN)
always fails.
New scheme skips individual CPER records that are too large, and also
limits the total number of records that will be printed to 5.
Fixes: 5debc80f12d4 ("ACPI/APEI: Limit printable size of BERT table data") Cc: All applicable <stable@vger.kernel.org> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Taking a recent change in the i8042 quirklist to this one: Clevo
board_names are somewhat unique, and if not: The generic Board_-/Sys_Vendor
string "Notebook" doesn't help much anyway. So identifying the devices just
by the board_name helps keeping the list significantly shorter and might
even hit more devices requiring the fix.
Signed-off-by: Werner Sembach <wse@tuxedocomputers.com> Fixes: 4da621e20bbc ("ACPI: video: Force backlight native for Clevo NL5xRU and NL5xNU") Cc: All applicable <stable@vger.kernel.org> Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The TongFang PF5PU1G, PF4NU1F, PF5NU1G, and PF5LUXG/TUXEDO BA15 Gen10,
Pulse 14/15 Gen1, and Pulse 15 Gen2 have the same problem as the Clevo
NL5xRU and NL5xNU/TUXEDO Aura 15 Gen1 and Gen2:
They have a working native and video interface. However the default
detection mechanism first registers the video interface before
unregistering it again and switching to the native interface during boot.
This results in a dangling SBIOS request for backlight change for some
reason, causing the backlight to switch to ~2% once per boot on the first
power cord connect or disconnect event. Setting the native interface
explicitly circumvents this buggy behaviour by avoiding the unregistering
process.
Signed-off-by: Werner Sembach <wse@tuxedocomputers.com> Cc: All applicable <stable@vger.kernel.org> Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit c3f4b3e8d49ee relocated and renamed the alloc_calls and
free_calls files from /sys/kernel/slab/NAME/*_calls over to
/sys/kernel/debug/slab/NAME/*_calls but didn't update the slabinfo tool
with the new location.
This change will now have slabinfo look at the new location (and filenames)
with a fallback to the prior files.
Commit 26330d5eb60a ("block: fix default IO priority handling")
introduced an inconsistency in get_current_ioprio() that tasks without
IO context return IOPRIO_DEFAULT priority while tasks with freshly
allocated IO context will return 0 (IOPRIO_CLASS_NONE/0) IO priority.
Tasks without IO context used to be rare before eaaf82e2eeab ("block:
move io_context creation into where it's needed") but after this commit
they became common because now only BFQ IO scheduler setups task's IO
context. Similar inconsistency is there for get_task_ioprio() so this
inconsistency is now exposed to userspace and userspace will see
different IO priority for tasks operating on devices with BFQ compared
to devices without BFQ. Furthemore the changes done by commit 26330d5eb60a change the behavior when no IO priority is set for BFQ IO
scheduler which is also documented in ioprio_set(2) manpage:
"If no I/O scheduler has been set for a thread, then by default the I/O
priority will follow the CPU nice value (setpriority(2)). In Linux
kernels before version 2.6.24, once an I/O priority had been set using
ioprio_set(), there was no way to reset the I/O scheduling behavior to
the default. Since Linux 2.6.24, specifying ioprio as 0 can be used to
reset to the default I/O scheduling behavior."
So make sure we default to IOPRIO_CLASS_NONE as used to be the case
before commit 26330d5eb60a. Also cleanup alloc_io_context() to
explicitely set this IO priority for the allocated IO context to avoid
future surprises. Note that we tweak ioprio_best() to maintain
ioprio_get(2) behavior and make this commit easily backportable.
CC: stable@vger.kernel.org Fixes: 26330d5eb60a ("block: fix default IO priority handling") Reviewed-by: Damien Le Moal <damien.lemoal@opensource.wdc.com> Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com> Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/20220623074840.5960-1-jack@suse.cz Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cgroup_skb/egress programs which sock_fields test installs process packets
flying in both directions, from the client to the server, and in reverse
direction.
Recently added dst_port check relies on the fact that destination
port (remote peer port) of the socket which sends the packet is known ahead
of time. This holds true only for the client socket, which connects to the
known server port.
Filter out any traffic that is not egressing from the client socket in the
BPF program that tests reading the dst_port.
Fixes: eea83c039b64 ("selftests/bpf: Extend verifier and bpf_sock tests for dst_port loads") Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20220317113920.1068535-3-jakub@cloudflare.com Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add coverage to the verifier tests and tests for reading bpf_sock fields to
ensure that 32-bit, 16-bit, and 8-bit loads from dst_port field are allowed
only at intended offsets and produce expected values.
While 16-bit and 8-bit access to dst_port field is straight-forward, 32-bit
wide loads need be allowed and produce a zero-padded 16-bit value for
backward compatibility.
The mitigations for RETBleed are currently ineffective on x86_32 since
entry_32.S does not use the required macros. However, for an x86_32
target, the kconfig symbols for them are still enabled by default and
/sys/devices/system/cpu/vulnerabilities/retbleed will wrongly report
that mitigations are in place.
Make all of these symbols depend on X86_64, and only enable RETHUNK by
default on X86_64.
Fixes: 647c1deea862 ("x86/retbleed: Add fine grained Kconfig knobs") Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/YtwSR3NNsWp1ohfV@decadent.org.uk
[bwh: Backported to 5.10/5.15/5.18: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some cloud hypervisors do not provide IBPB on very recent CPU processors,
including AMD processors affected by Retbleed.
Using IBPB before firmware calls on such systems would cause a GPF at boot
like the one below. Do not enable such calls when IBPB support is not
present.
With commit adf56da3a439 ("locking/rwsem: Make handoff bit handling more
consistent"), the writer that sets the handoff bit can be interrupted
out without clearing the bit if the wait queue isn't empty. This disables
reader and writer optimistic lock spinning and stealing.
Now if a non-first writer in the queue is somehow woken up or a new
waiter enters the slowpath, it can't acquire the lock. This is not the
case before commit adf56da3a439 as the writer that set the handoff bit
will clear it when exiting out via the out_nolock path. This is less
efficient as the busy rwsem stays in an unlock state for a longer time.
In some cases, this new behavior may cause lockups as shown in [1] and
[2].
This patch allows a non-first writer to ignore the handoff bit if it
is not originally set or initiated by the first waiter. This patch is
shown to be effective in fixing the lockup problem reported in [1].
Handle 0x0020, DMI type 17, 84 bytes
Memory Device
Array Handle: 0x0013
Error Information Handle: Not Provided
Total Width: 72 bits
Data Width: 64 bits
Size: 32 GB
Form Factor: DIMM
Set: None
Locator: PROC 1 DIMM 1 <===== device
Bank Locator: Not Specified <===== bank
This results in a buffer overflow because ghes_edac_register() calls
strlen() on an uninitialized label, which had non-zero values left over
from krealloc_array():
The label contains garbage because the commit in Fixes reallocs the
DIMMs array while scanning the system but doesn't clear the newly
allocated memory.
Change dimm_setup_label() to always initialize the label to fix the
issue. Set it to the empty string in case BIOS does not provide both
bank and device so that ghes_edac_register() can keep the default label
given by edac_mc_alloc_dimms().
[ bp: Rewrite commit message. ]
Fixes: 66721d153402a ("EDAC/ghes: Scan the system once on driver init") Co-developed-by: Robert Richter <rric@kernel.org> Signed-off-by: Robert Richter <rric@kernel.org> Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Robert Elliott <elliott@hpe.com> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20220719220124.760359-1-toshi.kani@hpe.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit be1c3685b6f1 ("mm/memblock: add memblock memory allocation apis")
added a check to determine whether arm_dma_zone_size is exceeding the
amount of kernel virtual address space available between the upper 4GB
virtual address limit and PAGE_OFFSET in order to provide a suitable
definition of MAX_DMA_ADDRESS that should fit within the 32-bit virtual
address space. The quantity used for comparison was off by a missing
trailing 0, leading to MAX_DMA_ADDRESS to be overflowing a 32-bit
quantity.
This was caught thanks to CONFIG_DEBUG_VIRTUAL on the bcm2711 platform
where we define a dma_zone_size of 1GB and we have a PAGE_OFFSET value
of 0xc000_0000 (CONFIG_VMSPLIT_3G) leading to MAX_DMA_ADDRESS being
0x1_0000_0000 which overflows the unsigned long type used throughout
__pa() and then __virt_addr_valid(). Because the virtual address passed
to __virt_addr_valid() would now be 0, the function would loudly warn
and flood the kernel log, thus making the platform unable to boot
properly.
There was a report that a task is waiting at the
throttle_direct_reclaim. The pgscan_direct_throttle in vmstat was
increasing.
This is a bug where zone_watermark_fast returns true even when the free
is very low. The commit b9f78fa27226 ("page_alloc: consider highatomic
reserve in watermark fast") changed the watermark fast to consider
highatomic reserve. But it did not handle a negative value case which
can be happened when reserved_highatomic pageblock is bigger than the
actual free.
If watermark is considered as ok for the negative value, allocating
contexts for order-0 will consume all free pages without direct reclaim,
and finally free page may become depleted except highatomic free.
Then allocating contexts may fall into throttle_direct_reclaim. This
symptom may easily happen in a system where wmark min is low and other
reclaimers like kswapd does not make free pages quickly.
Handle the negative case by using MIN.
Link: https://lkml.kernel.org/r/20220725095212.25388-1-jaewon31.kim@samsung.com Fixes: b9f78fa27226 ("page_alloc: consider highatomic reserve in watermark fast") Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com> Reported-by: GyeongHwan Hong <gh21.hong@samsung.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Yong-Taek Lee <ytk.lee@samsung.com> Cc: <stable@vger.kerenl.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If hmm_range_fault() is called with the HMM_PFN_REQ_FAULT flag and a
device private PTE is found, the hmm_range::dev_private_owner page is used
to determine if the device private page should not be faulted in.
However, if the device private page is not owned by the caller,
hmm_range_fault() returns an error instead of calling migrate_to_ram() to
fault in the page.
For example, if a page is migrated to GPU private memory and a RDMA fault
capable NIC tries to read the migrated page, without this patch it will
get an error. With this patch, the page will be migrated back to system
memory and the NIC will be able to read the data.
Link: https://lkml.kernel.org/r/20220727000837.4128709-2-rcampbell@nvidia.com Link: https://lkml.kernel.org/r/20220725183615.4118795-2-rcampbell@nvidia.com Fixes: 58d609aa32d0 ("mm/hmm: check the device private page owner in hmm_range_fault()") Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Reported-by: Felix Kuehling <felix.kuehling@amd.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Cc: Philip Yang <Philip.Yang@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This happens when calling sctp_sendmsg without connecting to server first.
In this case, a data chunk already queues up in send queue of client side
when processing the INIT_ACK from server in sctp_process_init() where it
calls sctp_stream_init() to alloc stream_in. If it fails to alloc stream_in
all stream_out will be freed in sctp_stream_init's err path. Then in the
asoc freeing it will crash when dequeuing this data chunk as stream_out
is missing.
As we can't free stream out before dequeuing all data from send queue, and
this patch is to fix it by moving the err path stream_out/in freeing in
sctp_stream_init() to sctp_stream_free() which is eventually called when
freeing the asoc in sctp_association_free(). This fix also makes the code
in sctp_process_init() more clear.
Note that in sctp_association_init() when it fails in sctp_stream_init(),
sctp_association_free() will not be called, and in that case it should
go to 'stream_free' err path to free stream instead of 'fail_init'.
Sending a PTP packet can imply to use the normal TX driver datapath but
invoked from the driver's ptp worker. The kernel generic TX code
disables softirqs and preemption before calling specific driver TX code,
but the ptp worker does not. Although current ptp driver functionality
does not require it, there are several reasons for doing so:
1) The invoked code is always executed with softirqs disabled for non
PTP packets.
2) Better if a ptp packet transmission is not interrupted by softirq
handling which could lead to high latencies.
3) netdev_xmit_more used by the TX code requires preemption to be
disabled.
Indeed a solution for dealing with kernel preemption state based on static
kernel configuration is not possible since the introduction of dynamic
preemption level configuration at boot time using the static calls
functionality.
When using 'perf mem' and 'perf c2c', an issue is observed that tool
reports the wrong offset for global data symbols. This is a common
issue on both x86 and Arm64 platforms.
Let's see an example, for a test program, below is the disassembly for
its .bss section which is dumped with objdump:
First we used 'perf mem record' to run the test program and then used
'perf --debug verbose=4 mem report' to observe what's the symbol info
for 'buf1' and 'buf2' structures.
The perf tool relies on libelf to parse symbols, in executable and
shared object files, 'st_value' holds a virtual address; 'sh_addr' is
the address at which section's first byte should reside in memory, and
'sh_offset' is the byte offset from the beginning of the file to the
first byte in the section. The perf tool uses below formula to convert
a symbol's memory address to a file address:
We can see the final adjusted address ranges for buf1 and buf2 are
[0x30a8-0x30e8) and [0x3068-0x30a8) respectively, apparently this is
incorrect, in the code, the structure for 'buf1' and 'buf2' specifies
compiler attribute with 64-byte alignment.
The problem happens for 'sh_offset', libelf returns it as 0x3028 which
is not 64-byte aligned, combining with disassembly, it's likely libelf
doesn't respect the alignment for .bss section, therefore, it doesn't
return the aligned value for 'sh_offset'.
Suggested by Fangrui Song, ELF file contains program header which
contains PT_LOAD segments, the fields p_vaddr and p_offset in PT_LOAD
segments contain the execution info. A better choice for converting
memory address to file address is using the formula:
file_address = st_value - p_vaddr + p_offset
This patch introduces elf_read_program_header() which returns the
program header based on the passed 'st_value', then it uses the formula
above to calculate the symbol file address; and the debugging log is
updated respectively.
We try using cancel_delayed_work_sync() to prevent the work from
enabling NAPI. This is insufficient since we don't disable the source
of the refill work scheduling. This means an NAPI poll callback after
cancel_delayed_work_sync() can schedule the refill work then can
re-enable the NAPI that leads to use-after-free [1].
Since the work can enable NAPI, we can't simply disable NAPI before
calling cancel_delayed_work_sync(). So fix this by introducing a
dedicated boolean to control whether or not the work could be
scheduled from NAPI.
[1]
==================================================================
BUG: KASAN: use-after-free in refill_work+0x43/0xd4
Read of size 2 at addr ffff88810562c92e by task kworker/2:1/42
Fixes: 5a39848b6859f ("virtio_net: set/cancel work on ndo_open/ndo_stop") Signed-off-by: Jason Wang <jasowang@redhat.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
NIX_AF_TLXX_PIR/CIR register format has changed from OcteonTx2
to CN10K. CN10K supports larger burst size. Fix burst exponent
and burst mantissa configuration for CN10K.
Also fixed 'maxrate' from u32 to u64 since 'police.rate_bytes_ps'
passed by stack is also u64.
There are sleep in atomic context bugs in timer handlers of sctp
such as sctp_generate_t3_rtx_event(), sctp_generate_probe_event(),
sctp_generate_t1_init_event(), sctp_generate_timeout_event(),
sctp_generate_t3_rtx_event() and so on.
The root cause is sctp_sched_prio_init_sid() with GFP_KERNEL parameter
that may sleep could be called by different timer handlers which is in
interrupt context.
One of the call paths that could trigger bug is shown below:
This patch changes gfp_t parameter of init_sid in sctp_sched_set_sched()
from GFP_KERNEL to GFP_ATOMIC in order to prevent sleep in atomic
context bugs.
Fix the inability to bring an interface up on a setup with
only MSI interrupts enabled (no MSI-X).
Solution is to add a default number of QPs = 1. This is enough,
since without MSI-X support driver enables only a basic feature set.
Fixes: a2d761c94ee9 ("i40e: Fix the number of queues available to be mapped for use") Signed-off-by: Dawid Lukwinski <dawid.lukwinski@intel.com> Signed-off-by: Michal Maloszewski <michal.maloszewski@intel.com> Tested-by: Dave Switzer <david.switzer@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Link: https://lore.kernel.org/r/20220722175401.112572-1-anthony.l.nguyen@intel.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
While reading sysctl_fib_notify_on_flag_change, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers.
Fixes: 1d4352c9675c ("net: ipv4: Emit notification when fib hardware flags are changed") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
While reading sysctl_tcp_reflect_tos, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
Fixes: 6553988b8db0 ("tcp: reflect tos value received in SYN to the socket") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>