Dave Chinner [Wed, 11 Aug 2021 01:33:41 +0000 (18:33 -0700)]
xfs: drop ->writepage completely
->writepage is only used in one place - single page writeback from
memory reclaim. We only allow such writeback from kswapd, not from
direct memory reclaim, and so it is rarely used. When it comes from
kswapd, it is effectively random dirty page shoot-down, which is
horrible for IO patterns. We will already have background writeback
trying to clean all the dirty pages in memory as efficiently as
possible, so having kswapd interrupt our well formed IO stream only
slows things down. So get rid of xfs_vm_writepage() completely.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: forward port to 5.15] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:45 +0000 (18:00 -0700)]
xfs: move the CIL workqueue to the CIL
We only use the CIL workqueue in the CIL, so it makes no sense to
hang it off the xfs_mount and have to walk multiple pointers back up
to the mount when we have the CIL structures right there.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:45 +0000 (18:00 -0700)]
xfs: CIL work is serialised, not pipelined
Because we use a single work structure attached to the CIL rather
than the CIL context, we can only queue a single work item at a
time. This results in the CIL being single threaded and limits
performance when it becomes CPU bound.
The design of the CIL is that it is pipelined and multiple commits
can be running concurrently, but the way the work is currently
implemented means that it is not pipelining as it was intended. The
critical work to switch the CIL context can take a few milliseconds
to run, but the rest of the CIL context flush can take hundreds of
milliseconds to complete. The context switching is the serialisation
point of the CIL, once the context has been switched the rest of the
context push can run asynchrnously with all other context pushes.
Hence we can move the work to the CIL context so that we can run
multiple CIL pushes at the same time and spread the majority of
the work out over multiple CPUs. We can keep the per-cpu CIL commit
state on the CIL rather than the context, because the context is
pinned to the CIL until the switch is done and we aggregate and
drain the per-cpu state held on the CIL during the context switch.
However, because we no longer serialise the CIL work, we can have
effectively unlimited CIL pushes in progress. We don't want to do
this - not only does it create contention on the iclogs and the
state machine locks, we can run the log right out of space with
outstanding pushes. Instead, limit the work concurrency to 4
concurrent works being processed at a time. This is enough
concurrency to remove the CIL from being a CPU bound bottleneck but
not enough to create new contention points or unbound concurrency
issues.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:44 +0000 (18:00 -0700)]
xfs: AIL needs asynchronous CIL forcing
The AIL pushing is stalling on log forces when it comes across
pinned items. This is happening on removal workloads where the AIL
is dominated by stale items that are removed from AIL when the
checkpoint that marks the items stale is committed to the journal.
This results is relatively few items in the AIL, but those that are
are often pinned as directories items are being removed from are
still being logged.
As a result, many push cycles through the CIL will first issue a
blocking log force to unpin the items. This can take some time to
complete, with tracing regularly showing push delays of half a
second and sometimes up into the range of several seconds. Sequences
like this aren't uncommon:
....
399.829437: xfsaild: last lsn 0x11002dd000 count 101 stuck 101 flushing 0 tout 20
<wanted 20ms, got 270ms delay>
400.099622: xfsaild: target 0x11002f3600, prev 0x11002f3600, last lsn 0x0
400.099623: xfsaild: first lsn 0x11002f3600
400.099679: xfsaild: last lsn 0x1100305000 count 16 stuck 11 flushing 0 tout 50
<wanted 50ms, got 500ms delay>
400.589348: xfsaild: target 0x110032e600, prev 0x11002f3600, last lsn 0x0
400.589349: xfsaild: first lsn 0x1100305000
400.589595: xfsaild: last lsn 0x110032e600 count 156 stuck 101 flushing 30 tout 50
<wanted 50ms, got 460ms delay>
400.950341: xfsaild: target 0x1100353000, prev 0x110032e600, last lsn 0x0
400.950343: xfsaild: first lsn 0x1100317c00
400.950436: xfsaild: last lsn 0x110033d200 count 105 stuck 101 flushing 0 tout 20
<wanted 20ms, got 200ms delay>
401.142333: xfsaild: target 0x1100361600, prev 0x1100353000, last lsn 0x0
401.142334: xfsaild: first lsn 0x110032e600
401.142535: xfsaild: last lsn 0x1100353000 count 122 stuck 101 flushing 8 tout 10
<wanted 10ms, got 10ms delay>
401.154323: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x1100353000
401.154328: xfsaild: first lsn 0x1100353000
401.154389: xfsaild: last lsn 0x1100353000 count 101 stuck 101 flushing 0 tout 20
<wanted 20ms, got 300ms delay>
401.451525: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0
401.451526: xfsaild: first lsn 0x1100353000
401.451804: xfsaild: last lsn 0x1100377200 count 170 stuck 22 flushing 122 tout 50
<wanted 50ms, got 500ms delay>
401.933581: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0
....
In each of these cases, every AIL pass saw 101 log items stuck on
the AIL (pinned) with very few other items being found. Each pass, a
log force was issued, and delay between last/first is the sleep time
+ the sync log force time.
Some of these 101 items pinned the tail of the log. The tail of the
log does slowly creep forward (first lsn), but the problem is that
the log is actually out of reservation space because it's been
running so many transactions that stale items that never reach the
AIL but consume log space. Hence we have a largely empty AIL, with
long term pins on items that pin the tail of the log that don't get
pushed frequently enough to keep log space available.
The problem is the hundreds of milliseconds that we block in the log
force pushing the CIL out to disk. The AIL should not be stalled
like this - it needs to run and flush items that are at the tail of
the log with minimal latency. What we really need to do is trigger a
log flush, but then not wait for it at all - we've already done our
waiting for stuff to complete when we backed off prior to the log
force being issued.
Even if we remove the XFS_LOG_SYNC from the xfs_log_force() call, we
still do a blocking flush of the CIL and that is what is causing the
issue. Hence we need a new interface for the CIL to trigger an
immediate background push of the CIL to get it moving faster but not
to wait on that to occur. While the CIL is pushing, the AIL can also
be pushing.
We already have an internal interface to do this -
xlog_cil_push_now() - but we need a wrapper for it to be used
externally. xlog_cil_force_seq() can easily be extended to do what
we need as it already implements the synchronous CIL push via
xlog_cil_push_now(). Add the necessary flags and "push current
sequence" semantics to xlog_cil_force_seq() and convert the AIL
pushing to use it.
One of the complexities here is that the CIL push does not guarantee
that the commit record for the CIL checkpoint is written to disk.
The current log force ensures this by submitting the current ACTIVE
iclog that the commit record was written to. We need the CIL to
actually write this commit record to disk for an async push to
ensure that the checkpoint actually makes it to disk and unpins the
pinned items in the checkpoint on completion. Hence we need to pass
down to the CIL push that we are doing an async flush so that it can
switch out the commit_iclog if necessary to get written to disk when
the commit iclog is finally released.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:44 +0000 (18:00 -0700)]
xfs: order CIL checkpoint start records
Because log recovery depends on strictly ordered start records as
well as strictly ordered commit records.
This is a zero day bug in the way XFS writes pipelined transactions
to the journal which is exposed by fixing the zero day bug that
prevents the CIL from pipelining checkpoints. This re-introduces
explicit concurrent commits back into the on-disk journal and hence
out of order start records.
The XFS journal commit code has never ordered start records and we
have relied on strict commit record ordering for correct recovery
ordering of concurrently written transactions. Unfortunately, root
cause analysis uncovered the fact that log recovery uses the LSN of
the start record for transaction commit processing. Hence, whilst
the commits are processed in strict order by recovery, the LSNs
associated with the commits can be out of order and so recovery may
stamp incorrect LSNs into objects and/or misorder intents in the AIL
for later processing. This can result in log recovery failures
and/or on disk corruption, sometimes silent.
Because this is a long standing log recovery issue, we can't just
fix log recovery and call it good. This still leaves older kernels
susceptible to recovery failures and corruption when replaying a log
from a kernel that pipelines checkpoints. There is also the issue
that in-memory ordering for AIL pushing and data integrity
operations are based on checkpoint start LSNs, and if the start LSN
is incorrect in the journal, it is also incorrect in memory.
Hence there's really only one choice for fixing this zero-day bug:
we need to strictly order checkpoint start records in ascending
sequence order in the log, the same way we already strictly order
commit records.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:43 +0000 (18:00 -0700)]
xfs: attach iclog callbacks in xlog_cil_set_ctx_write_state()
Now that we have a mechanism to guarantee that the callbacks
attached to an iclog are owned by the context that attaches them
until they drop their reference to the iclog via
xlog_state_release_iclog(), we can attach callbacks to the iclog at
any time we have an active reference to the iclog.
xlog_state_get_iclog_space() always guarantees that the commit
record will fit in the iclog it returns, so we can move this IO
callback setting to xlog_cil_set_ctx_write_state(), record the
commit iclog in the context and remove the need for the commit iclog
to be returned by xlog_write() altogether.
This, in turn, allows us to move the wakeup for ordered commit
record writes up into xlog_cil_set_ctx_write_state(), too, because
we have been guaranteed that this commit record will be physically
located in the iclog before any waiting commit record at a higher
sequence number will be granted iclog space.
This further cleans up the post commit record write processing in
the CIL push code, especially as xlog_state_release_iclog() will now
clean up the context when shutdown errors occur.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:43 +0000 (18:00 -0700)]
xfs: factor out log write ordering from xlog_cil_push_work()
So we can use it for start record ordering as well as commit record
ordering in future.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:42 +0000 (18:00 -0700)]
xfs: pass a CIL context to xlog_write()
Pass the CIL context to xlog_write() rather than a pointer to a LSN
variable. Only the CIL checkpoint calls to xlog_write() need to know
about the start LSN of the writes, so rework xlog_write to directly
write the LSNs into the CIL context structure.
This removes the commit_lsn variable from xlog_cil_push_work(), so
now we only have to issue the commit record ordering wakeup from
there.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:42 +0000 (18:00 -0700)]
xfs: move xlog_commit_record to xfs_log_cil.c
It is only used by the CIL checkpoints, and is the counterpart to
start record formatting and writing that is already local to
xfs_log_cil.c.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:41 +0000 (18:00 -0700)]
xfs: log head and tail aren't reliable during shutdown
I'm seeing assert failures from xlog_space_left() after a shutdown
has begun that look like:
XFS (dm-0): log I/O error -5
XFS (dm-0): xfs_do_force_shutdown(0x2) called from line 1338 of file fs/xfs/xfs_log.c. Return address = xlog_ioend_work+0x64/0xc0
XFS (dm-0): Log I/O Error Detected.
XFS (dm-0): Shutting down filesystem. Please unmount the filesystem and rectify the problem(s)
XFS (dm-0): xlog_space_left: head behind tail
XFS (dm-0): tail_cycle = 6, tail_bytes = 2706944
XFS (dm-0): GH cycle = 6, GH bytes = 1633867
XFS: Assertion failed: 0, file: fs/xfs/xfs_log.c, line: 1310
------------[ cut here ]------------
Call Trace:
xlog_space_left+0xc3/0x110
xlog_grant_push_threshold+0x3f/0xf0
xlog_grant_push_ail+0x12/0x40
xfs_log_reserve+0xd2/0x270
? __might_sleep+0x4b/0x80
xfs_trans_reserve+0x18b/0x260
.....
There are two things here. Firstly, after a shutdown, the log head
and tail can be out of whack as things abort and release (or don't
release) resources, so checking them for sanity doesn't make much
sense. Secondly, xfs_log_reserve() can race with shutdown and so it
can still fail like this even though it has already checked for a
log shutdown before calling xlog_grant_push_ail().
So, before ASSERT failing in xlog_space_left(), make sure we haven't
already shut down....
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:41 +0000 (18:00 -0700)]
xfs: don't run shutdown callbacks on active iclogs
When the log is shutdown, it currently walks all the iclogs and runs
callbacks that are attached to the iclogs, regardless of whether the
iclog is queued for IO completion or not. This creates a problem for
contexts attaching callbacks to iclogs in that a racing shutdown can
run the callbacks even before the attaching context has finished
processing the iclog and releasing it for IO submission.
If the callback processing of the iclog frees the structure that is
attached to the iclog, then this leads to an UAF scenario that can
only be protected against by holding the icloglock from the point
callbacks are attached through to the release of the iclog. While we
currently do this, it is not practical or sustainable.
Hence we need to make shutdown processing the responsibility of the
context that holds active references to the iclog. We know that the
contexts attaching callbacks to the iclog must have active
references to the iclog, and that means they must be in either
ACTIVE or WANT_SYNC states. xlog_state_do_callback() will skip over
iclogs in these states -except- when the log is shut down.
xlog_state_do_callback() checks the state of the iclogs while
holding the icloglock, therefore the reference count/state change
that occurs in xlog_state_release_iclog() after the callbacks are
atomic w.r.t. shutdown processing.
We can't push the responsibility of callback cleanup onto the CIL
context because we can have ACTIVE iclogs that have callbacks
attached that have already been released. Hence we really need to
internalise the cleanup of callbacks into xlog_state_release_iclog()
processing.
Indeed, we already have that internalisation via:
xlog_state_release_iclog
drop last reference
->SYNCING
xlog_sync
xlog_write_iclog
if (log_is_shutdown)
xlog_state_done_syncing()
xlog_state_do_callback()
<process shutdown on iclog that is now in SYNCING state>
The problem is that xlog_state_release_iclog() aborts before doing
anything if the log is already shut down. It assumes that the
callbacks have already been cleaned up, and it doesn't need to do
any cleanup.
Hence the fix is to remove the xlog_is_shutdown() check from
xlog_state_release_iclog() so that reference counts are correctly
released from the iclogs, and when the reference count is zero we
always transition to SYNCING if the log is shut down. Hence we'll
always enter the xlog_sync() path in a shutdown and eventually end
up erroring out the iclog IO and running xlog_state_do_callback() to
process the callbacks attached to the iclog.
This allows us to stop processing referenced ACTIVE/WANT_SYNC iclogs
directly in the shutdown code, and in doing so gets rid of the UAF
vector that currently exists. This then decouples the adding of
callbacks to the iclogs from xlog_state_release_iclog() as we
guarantee that xlog_state_release_iclog() will process the callbacks
if the log has been shut down before xlog_state_release_iclog() has
been called.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:40 +0000 (18:00 -0700)]
xfs: separate out log shutdown callback processing
The iclog callback processing done during a forced log shutdown has
different logic to normal runtime IO completion callback processing.
Separate out the shutdown callbacks into their own function and call
that from the shutdown code instead.
We don't need this shutdown specific logic in the normal runtime
completion code - we'll always run the shutdown version on shutdown,
and it will do what shutdown needs regardless of whether there are
racing IO completion callbacks scheduled or in progress. Hence we
can also simplify the normal IO completion callpath and only abort
if shutdown occurred while we actively were processing callbacks.
Further, separating out the IO completion logic from the shutdown
logic avoids callback race conditions from being triggered by log IO
completion after a shutdown. IO completion will now only run
callbacks on iclogs that are in the correct state for a callback to
be run, avoiding the possibility of running callbacks on a
referenced iclog that hasn't yet been submitted for IO.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:40 +0000 (18:00 -0700)]
xfs: rework xlog_state_do_callback()
Clean it up a bit by factoring and rearranging some of the code.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 01:00:39 +0000 (18:00 -0700)]
xfs: make forced shutdown processing atomic
The running of a forced shutdown is a bit of a mess. It does racy
checks for XFS_MOUNT_SHUTDOWN in xfs_do_force_shutdown(), then
does more racy checks in xfs_log_force_unmount() before finally
setting XFS_MOUNT_SHUTDOWN and XLOG_IO_ERROR under the
log->icloglock.
Move the checking and setting of XFS_MOUNT_SHUTDOWN into
xfs_do_force_shutdown() so we only process a shutdown once and once
only. Serialise this with the mp->m_sb_lock spinlock so that the
state change is atomic and won't race. Move all the mount specific
shutdown state changes from xfs_log_force_unmount() to
xfs_do_force_shutdown() so they are done atomically with setting
XFS_MOUNT_SHUTDOWN.
Then get rid of the racy xlog_is_shutdown() check from
xlog_force_shutdown(), and gate the log shutdown on the
test_and_set_bit(XLOG_IO_ERROR) test under the icloglock. This
means that the log is shutdown once and once only, and code that
needs to prevent races with shutdown can do so by holding the
icloglock and checking the return value of xlog_is_shutdown().
This results in a predictable shutdown execution process - we set the
shutdown flags once and process the shutdown once rather than the
current "as many concurrent shutdowns as can race to the flag
setting" situation we have now.
Also, now that shutdown is atomic, alway emit a stack trace when the
error level for the filesystem is high enough. This means that we
always get a stack trace when trying to diagnose the cause of
shutdowns in the field, rather than just for SHUTDOWN_CORRUPT_INCORE
cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 00:59:02 +0000 (17:59 -0700)]
xfs: convert log flags to an operational state field
log->l_flags doesn't actually contain "flags" as such, it contains
operational state information that can change at runtime. For the
shutdown state, this at least should be an atomic bit because
it is read without holding locks in many places and so using atomic
bitops for the state field modifications makes sense.
This allows us to use things like test_and_set_bit() on state
changes (e.g. setting XLOG_TAIL_WARN) to avoid races in setting the
state when we aren't holding locks.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 00:59:02 +0000 (17:59 -0700)]
xfs: move recovery needed state updates to xfs_log_mount_finish
xfs_log_mount_finish() needs to know if recovery is needed or not to
make decisions on whether to flush the log and AIL. Move the
handling of the NEED_RECOVERY state out to this function rather than
needing a temporary variable to store this state over the call to
xlog_recover_finish().
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 00:59:01 +0000 (17:59 -0700)]
xfs: XLOG_STATE_IOERROR must die
We don't need an iclog state field to tell us the log has been shut
down. We can just check the xlog_is_shutdown() instead. The avoids
the need to have shutdown overwrite the current iclog state while
being active used by the log code and so having to ensure that every
iclog state check handles XLOG_STATE_IOERROR appropriately.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Wed, 11 Aug 2021 00:59:01 +0000 (17:59 -0700)]
xfs: convert XLOG_FORCED_SHUTDOWN() to xlog_is_shutdown()
Make it less shouty and a static inline before adding more calls
through the log code.
Also convert internal log code that uses XFS_FORCED_SHUTDOWN(mount)
to use xlog_is_shutdown(log) as well.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dwaipayan Ray [Mon, 9 Aug 2021 17:14:45 +0000 (10:14 -0700)]
xfs: cleanup __FUNCTION__ usage
__FUNCTION__ exists only for backwards compatibility reasons
with old gcc versions. Replace it with __func__.
Signed-off-by: Dwaipayan Ray <dwaipayanray1@gmail.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Now that xfs_attr_rmtval_remove is gone, rename __xfs_attr_rmtval_remove
to xfs_attr_rmtval_remove
Signed-off-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This is a quick patch to add a new xfs_attr_*_return tracepoints. We
use these to track when ever a new state is set or -EAGAIN is returned
Signed-off-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Darrick J. Wong [Sun, 8 Aug 2021 15:27:13 +0000 (08:27 -0700)]
xfs: refactor xfs_iget calls from log intent recovery
Hoist the code from xfs_bui_item_recover that igets an inode and marks
it as being part of log intent recovery. The next patch will want a
common function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Darrick J. Wong [Sun, 8 Aug 2021 15:27:12 +0000 (08:27 -0700)]
xfs: clear log incompat feature bits when the log is idle
When there are no ongoing transactions and the log contents have been
checkpointed back into the filesystem, the log performs 'covering',
which is to say that it log a dummy transaction to record the fact that
the tail has caught up with the head. This is a good time to clear log
incompat feature flags, because they are flags that are temporarily set
to limit the range of kernels that can replay a dirty log.
Since it's possible that some other higher level thread is about to
start logging items protected by a log incompat flag, we create a rwsem
so that upper level threads can coordinate this with the log. It would
probably be more performant to use a percpu rwsem, but the ability to
/try/ taking the write lock during covering is critical, and percpu
rwsems do not provide that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Darrick J. Wong [Sun, 8 Aug 2021 15:27:12 +0000 (08:27 -0700)]
xfs: allow setting and clearing of log incompat feature flags
Log incompat feature flags in the superblock exist for one purpose: to
protect the contents of a dirty log from replay on a kernel that isn't
prepared to handle those dirty contents. This means that they can be
cleared if (a) we know the log is clean and (b) we know that there
aren't any other threads in the system that might be setting or relying
upon a log incompat flag.
Therefore, clear the log incompat flags when we've finished recovering
the log, when we're unmounting cleanly, remounting read-only, or
freezing; and provide a function so that subsequent patches can start
using this.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Dave Chinner [Mon, 9 Aug 2021 17:10:01 +0000 (10:10 -0700)]
xfs: replace kmem_alloc_large() with kvmalloc()
There is no reason for this wrapper existing anymore. All the places
that use KM_NOFS allocation are within transaction contexts and
hence covered by memalloc_nofs_save/restore contexts. Hence we don't
need any special handling of vmalloc for large IOs anymore and
so special casing this code isn't necessary.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Mon, 9 Aug 2021 17:10:01 +0000 (10:10 -0700)]
xfs: remove kmem_alloc_io()
Since commit d569d625447f ("mm, sl[aou]b: guarantee natural alignment
for kmalloc(power-of-two)"), the core slab code now guarantees slab
alignment in all situations sufficient for IO purposes (i.e. minimum
of 512 byte alignment of >= 512 byte sized heap allocations) we no
longer need the workaround in the XFS code to provide this
guarantee.
Replace the use of kmem_alloc_io() with kmem_alloc() or
kmem_alloc_large() appropriately, and remove the kmem_alloc_io()
interface altogether.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Mon, 9 Aug 2021 17:10:00 +0000 (10:10 -0700)]
mm: Add kvrealloc()
During log recovery of an XFS filesystem with 64kB directory
buffers, rebuilding a buffer split across two log records results
in a memory allocation warning from krealloc like this:
Essentially, we are taking a multi-order allocation from kmem_alloc()
(which has an open coded no fail, no warn loop) and then
reallocating it out to 64kB using krealloc(__GFP_NOFAIL) and that is
then triggering the above warning.
This is a regression caused by converting this code from an open
coded no fail/no warn reallocation loop to using __GFP_NOFAIL.
What we actually need here is kvrealloc(), so that if contiguous
page allocation fails we fall back to vmalloc() and we don't
get nasty warnings happening in XFS.
Fixes: 7c7574cae4fe ("xfs: remove kmem_realloc()") Signed-off-by: Dave Chinner <dchinner@redhat.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Darrick J. Wong [Fri, 6 Aug 2021 18:06:35 +0000 (11:06 -0700)]
xfs: dump log intent items that cannot be recovered due to corruption
If we try to recover a log intent item and the operation fails due to
filesystem corruption, dump the contents of the item to the log for
further analysis.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
Darrick J. Wong [Fri, 6 Aug 2021 18:06:35 +0000 (11:06 -0700)]
xfs: grab active perag ref when reading AG headers
This patch prepares scrub to deal with the possibility of tearing down
entire AGs by changing the order of resource acquisition to match the
rest of the XFS codebase. In other words, scrub now grabs AG resources
in order of: perag structure, then AGI/AGF/AGFL buffers, then btree
cursors; and releases them in reverse order.
This requires us to distinguish xchk_ag_init callers -- some are
responding to a user request to check AG metadata, in which case we can
return ENOENT to userspace; but other callers have an ondisk reference
to an AG that they're trying to cross-reference. In this second case,
the lack of an AG means there's ondisk corruption, since ondisk metadata
cannot point into nonexistent space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:44 +0000 (11:05 -0700)]
xfs: drop experimental warnings for bigtime and inobtcount
These two features were merged a year ago, userspace tooling have been
merged, and no serious errors have been reported by the developers.
Drop the experimental tag to encourage wider testing.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:43 +0000 (11:05 -0700)]
xfs: throttle inode inactivation queuing on memory reclaim
Now that we defer inode inactivation, we've decoupled the process of
unlinking or closing an inode from the process of inactivating it. In
theory this should lead to better throughput since we now inactivate the
queued inodes in batches instead of one at a time.
Unfortunately, one of the primary risks with this decoupling is the loss
of rate control feedback between the frontend and background threads.
In other words, a rm -rf /* thread can run the system out of memory if
it can queue inodes for inactivation and jump to a new CPU faster than
the background threads can actually clear the deferred work. The
workers can get scheduled off the CPU if they have to do IO, etc.
To solve this problem, we configure a shrinker so that it will activate
the /second/ time the shrinkers are called. The custom shrinker will
queue all percpu deferred inactivation workers immediately and set a
flag to force frontend callers who are releasing a vfs inode to wait for
the inactivation workers.
On my test VM with 560M of RAM and a 2TB filesystem, this seems to solve
most of the OOMing problem when deleting 10 million inodes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:43 +0000 (11:05 -0700)]
xfs: avoid buffer deadlocks when walking fs inodes
When we're servicing an INUMBERS or BULKSTAT request or running
quotacheck, grab an empty transaction so that we can use its inherent
recursive buffer locking abilities to detect inode btree cycles without
hitting ABBA buffer deadlocks. This patch requires the deferred inode
inactivation patchset because xfs_irele cannot directly call
xfs_inactive when the iwalk itself has an (empty) transaction.
Found by fuzzing an inode btree pointer to introduce a cycle into the
tree (xfs/365).
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:42 +0000 (11:05 -0700)]
xfs: use background worker pool when transactions can't get free space
In xfs_trans_alloc, if the block reservation call returns ENOSPC, we
call xfs_blockgc_free_space with a NULL icwalk structure to try to free
space. Each frontend thread that encounters this situation starts its
own walk of the inode cache to see if it can find anything, which is
wasteful since we don't have any additional selection criteria. For
this one common case, create a function that reschedules all pending
background work immediately and flushes the workqueue so that the scan
can run in parallel.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:42 +0000 (11:05 -0700)]
xfs: don't run speculative preallocation gc when fs is frozen
Now that we have the infrastructure to switch background workers on and
off at will, fix the block gc worker code so that we don't actually run
the worker when the filesystem is frozen, same as we do for deferred
inactivation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:42 +0000 (11:05 -0700)]
xfs: flush inode inactivation work when compiling usage statistics
Users have come to expect that the space accounting information in
statfs and getquota reports are fairly accurate. Now that we inactivate
inodes from a background queue, these numbers can be thrown off by
whatever resources are singly-owned by the inodes in the queue. Flush
the pending inactivations when userspace asks for a space usage report.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:41 +0000 (11:05 -0700)]
xfs: inactivate inodes any time we try to free speculative preallocations
Other parts of XFS have learned to call xfs_blockgc_free_{space,quota}
to try to free speculative preallocations when space is tight. This
means that file writes, transaction reservation failures, quota limit
enforcement, and the EOFBLOCKS ioctl all call this function to free
space when things are tight.
Since inode inactivation is now a background task, this means that the
filesystem can be hanging on to unlinked but not yet freed space. Add
this to the list of things that xfs_blockgc_free_* makes writer threads
scan for when they cannot reserve space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:41 +0000 (11:05 -0700)]
xfs: queue inactivation immediately when free realtime extents are tight
Now that we have made the inactivation of unlinked inodes a background
task to increase the throughput of file deletions, we need to be a
little more careful about how long of a delay we can tolerate.
Similar to the patch doing this for free space on the data device, if
the file being inactivated is a realtime file and the realtime volume is
running low on free extents, we want to run the worker ASAP so that the
realtime allocator can make better decisions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:40 +0000 (11:05 -0700)]
xfs: queue inactivation immediately when quota is nearing enforcement
Now that we have made the inactivation of unlinked inodes a background
task to increase the throughput of file deletions, we need to be a
little more careful about how long of a delay we can tolerate.
Specifically, if the dquots attached to the inode being inactivated are
nearing any kind of enforcement boundary, we want to queue that
inactivation work immediately so that users don't get EDQUOT/ENOSPC
errors even after they deleted a bunch of files to stay within quota.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:40 +0000 (11:05 -0700)]
xfs: queue inactivation immediately when free space is tight
Now that we have made the inactivation of unlinked inodes a background
task to increase the throughput of file deletions, we need to be a
little more careful about how long of a delay we can tolerate.
On a mostly empty filesystem, the risk of the allocator making poor
decisions due to fragmentation of the free space on account a lengthy
delay in background updates is minimal because there's plenty of space.
However, if free space is tight, we want to deallocate unlinked inodes
as quickly as possible to avoid fallocate ENOSPC and to give the
allocator the best shot at optimal allocations for new writes.
Therefore, queue the percpu worker immediately if the filesystem is more
than 95% full. This follows the same principle that XFS becomes less
aggressive about speculative allocations and lazy cleanup (and more
precise about accounting) when nearing full.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Dave Chinner [Fri, 6 Aug 2021 18:05:39 +0000 (11:05 -0700)]
xfs: per-cpu deferred inode inactivation queues
Move inode inactivation to background work contexts so that it no
longer runs in the context that releases the final reference to an
inode. This will allow process work that ends up blocking on
inactivation to continue doing work while the filesytem processes
the inactivation in the background.
A typical demonstration of this is unlinking an inode with lots of
extents. The extents are removed during inactivation, so this blocks
the process that unlinked the inode from the directory structure. By
moving the inactivation to the background process, the userspace
applicaiton can keep working (e.g. unlinking the next inode in the
directory) while the inactivation work on the previous inode is
done by a different CPU.
The implementation of the queue is relatively simple. We use a
per-cpu lockless linked list (llist) to queue inodes for
inactivation without requiring serialisation mechanisms, and a work
item to allow the queue to be processed by a CPU bound worker
thread. We also keep a count of the queue depth so that we can
trigger work after a number of deferred inactivations have been
queued.
The use of a bound workqueue with a single work depth allows the
workqueue to run one work item per CPU. We queue the work item on
the CPU we are currently running on, and so this essentially gives
us affine per-cpu worker threads for the per-cpu queues. THis
maintains the effective CPU affinity that occurs within XFS at the
AG level due to all objects in a directory being local to an AG.
Hence inactivation work tends to run on the same CPU that last
accessed all the objects that inactivation accesses and this
maintains hot CPU caches for unlink workloads.
A depth of 32 inodes was chosen to match the number of inodes in an
inode cluster buffer. This hopefully allows sequential
allocation/unlink behaviours to defering inactivation of all the
inodes in a single cluster buffer at a time, further helping
maintain hot CPU and buffer cache accesses while running
inactivations.
A hard per-cpu queue throttle of 256 inode has been set to avoid
runaway queuing when inodes that take a long to time inactivate are
being processed. For example, when unlinking inodes with large
numbers of extents that can take a lot of processing to free.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: tweak comments and tracepoints, convert opflags to state bits] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:39 +0000 (11:05 -0700)]
xfs: detach dquots from inode if we don't need to inactivate it
If we don't need to inactivate an inode, we can detach the dquots and
move on to reclamation. This isn't strictly required here; it's a
preparation patch for deferred inactivation per reviewer request[1] to
move the creation of xfs_inode_needs_inactivation into a separate
change. Eventually this !need_inactive chunk will turn into the code
path for inodes that skip xfs_inactive and go straight to memory
reclaim.
[1] https://lore.kernel.org/linux-xfs/20210609012838.GW2945738@locust/T/#mca6d958521cb88bbc1bfe1a30767203328d410b5 Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Darrick J. Wong [Fri, 6 Aug 2021 18:05:38 +0000 (11:05 -0700)]
xfs: move xfs_inactive call to xfs_inode_mark_reclaimable
Move the xfs_inactive call and all the other debugging checks and stats
updates into xfs_inode_mark_reclaimable because most of that are
implementation details about the inode cache. This is preparation for
deferred inactivation that is coming up. We also move it around
xfs_icache.c in preparation for deferred inactivation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
Dave Chinner [Fri, 6 Aug 2021 18:05:38 +0000 (11:05 -0700)]
xfs: introduce all-mounts list for cpu hotplug notifications
The inode inactivation and CIL tracking percpu structures are
per-xfs_mount structures. That means when we get a CPU dead
notification, we need to then iterate all the per-cpu structure
instances to process them. Rather than keeping linked lists of
per-cpu structures in each subsystem, add a list of all xfs_mounts
that the generic xfs_cpu_dead() function will iterate and call into
each subsystem appropriately.
This allows us to handle both per-mount and global XFS percpu state
from xfs_cpu_dead(), and avoids the need to link subsystem
structures that can be easily found from the xfs_mount into their
own global lists.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: expand some comments about mount list setup ordering rules] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Fri, 6 Aug 2021 18:05:37 +0000 (11:05 -0700)]
xfs: introduce CPU hotplug infrastructure
We need to move to per-cpu state for both deferred inode
inactivation and CIL tracking, but to do that we
need to handle CPUs being removed from the system by the hot-plug
code. Introduce generic XFS infrastructure to handle CPU hotplug
events that is set up at module init time and torn down at module
exit time.
Initially, we only need CPU dead notifications, so we only set
up a callback for these notifications. The infrastructure can be
updated in future for other CPU hotplug state machine notifications
easily if ever needed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: rearrange some macros, fix function prototypes] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs: remove the active vs running quota differentiation
These only made a difference when quotaoff supported disabling quota
accounting on a mounted file system, so we can switch everyone to use
a single set of flags and helpers now. Note that the *QUOTA_ON naming
for the helpers is kept as it was the much more commonly used one.
Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs: remove the flags argument to xfs_qm_dquot_walk
We always purge all dquots now, so drop the argument.
Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs: remove support for disabling quota accounting on a mounted file system
Disabling quota accounting is hairy, racy code with all kinds of pitfalls.
And it has a very strange mind set, as quota accounting (unlike
enforcement) really is a propery of the on-disk format. There is no good
use case for supporting this.
Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Linus Torvalds [Sun, 1 Aug 2021 19:25:30 +0000 (12:25 -0700)]
Merge tag 'perf-tools-fixes-for-v5.14-2021-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux
Pull perf tools fixes from Arnaldo Carvalho de Melo:
- Revert "perf map: Fix dso->nsinfo refcounting", this makes 'perf top'
abort, uncovering a design flaw on how namespace information is kept.
The fix for that is more than we can do right now, leave it for the
next merge window.
- Split --dump-raw-trace by AUX records for ARM's CoreSight, fixing up
the decoding of some records.
- Fix PMU alias matching.
Thanks to James Clark and John Garry for these fixes.
* tag 'perf-tools-fixes-for-v5.14-2021-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux:
Revert "perf map: Fix dso->nsinfo refcounting"
perf pmu: Fix alias matching
perf cs-etm: Split --dump-raw-trace by AUX records
Linus Torvalds [Sun, 1 Aug 2021 19:18:44 +0000 (12:18 -0700)]
Merge tag 'powerpc-5.14-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- Don't use r30 in VDSO code, to avoid breaking existing Go lang
programs.
- Change an export symbol to allow non-GPL modules to use spinlocks
again.
Thanks to Paul Menzel, and Srikar Dronamraju.
* tag 'powerpc-5.14-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/vdso: Don't use r30 to avoid breaking Go lang
powerpc/pseries: Fix regression while building external modules
Linus Torvalds [Sun, 1 Aug 2021 19:07:23 +0000 (12:07 -0700)]
Merge tag 'xfs-5.14-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs fixes from Darrick Wong:
"This contains a bunch of bug fixes in XFS.
Dave and I have been busy the last couple of weeks to find and fix as
many log recovery bugs as we can find; here are the results so far. Go
fstests -g recoveryloop! ;)
- Fix a number of coordination bugs relating to cache flushes for
metadata writeback, cache flushes for multi-buffer log writes, and
FUA writes for single-buffer log writes
- Fix a bug with incorrect replay of attr3 blocks
- Fix unnecessary stalls when flushing logs to disk
- Fix spoofing problems when recovering realtime bitmap blocks"
* tag 'xfs-5.14-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: prevent spoofing of rtbitmap blocks when recovering buffers
xfs: limit iclog tail updates
xfs: need to see iclog flags in tracing
xfs: Enforce attr3 buffer recovery order
xfs: logging the on disk inode LSN can make it go backwards
xfs: avoid unnecessary waits in xfs_log_force_lsn()
xfs: log forces imply data device cache flushes
xfs: factor out forced iclog flushes
xfs: fix ordering violation between cache flushes and tail updates
xfs: fold __xlog_state_release_iclog into xlog_state_release_iclog
xfs: external logs need to flush data device
xfs: flush data dev on external log write
Merge tag '5.14-rc3-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6
Pull cifs fixes from Steve French:
"Three cifs/smb3 fixes, including two for stable, and a fix for an
fallocate problem noticed by Clang"
* tag '5.14-rc3-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6:
cifs: add missing parsing of backupuid
smb3: rc uninitialized in one fallocate path
SMB3: fix readpage for large swap cache
- mlx5e: RX, avoid possible data corruption w/ relaxed ordering and
LRO
- phy: re-add check for PHY_BRCM_DIS_TXCRXC_NOENRGY on the BCM54811
PHY
- sctp: fix return value check in __sctp_rcv_asconf_lookup
Previous releases - always broken:
- bpf:
- more spectre corner case fixes, introduce a BPF nospec
instruction for mitigating Spectre v4
- fix OOB read when printing XDP link fdinfo
- sockmap: fix cleanup related races
- mac80211: fix enabling 4-address mode on a sta vif after assoc
- can:
- raw: raw_setsockopt(): fix raw_rcv panic for sock UAF
- j1939: j1939_session_deactivate(): clarify lifetime of session
object, avoid UAF
- fix number of identical memory leaks in USB drivers
- tipc:
- do not blindly write skb_shinfo frags when doing decryption
- fix sleeping in tipc accept routine"
* tag 'net-5.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (91 commits)
gve: Update MAINTAINERS list
can: esd_usb2: fix memory leak
can: ems_usb: fix memory leak
can: usb_8dev: fix memory leak
can: mcba_usb_start(): add missing urb->transfer_dma initialization
can: hi311x: fix a signedness bug in hi3110_cmd()
MAINTAINERS: add Yasushi SHOJI as reviewer for the Microchip CAN BUS Analyzer Tool driver
bpf: Fix leakage due to insufficient speculative store bypass mitigation
bpf: Introduce BPF nospec instruction for mitigating Spectre v4
sis900: Fix missing pci_disable_device() in probe and remove
net: let flow have same hash in two directions
nfc: nfcsim: fix use after free during module unload
tulip: windbond-840: Fix missing pci_disable_device() in probe and remove
sctp: fix return value check in __sctp_rcv_asconf_lookup
nfc: s3fwrn5: fix undefined parameter values in dev_err()
net/mlx5: Fix mlx5_vport_tbl_attr chain from u16 to u32
net/mlx5e: Fix nullptr in mlx5e_hairpin_get_mdev()
net/mlx5: Unload device upon firmware fatal error
net/mlx5e: Fix page allocation failure for ptp-RQ over SF
net/mlx5e: Fix page allocation failure for trap-RQ over SF
...
Merge tag 'acpi-5.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI fixes from Rafael Wysocki:
"These revert a recent IRQ resources handling modification that turned
out to be problematic, fix suspend-to-idle handling on AMD platforms
to take upcoming systems into account properly and fix the retrieval
of the DPTF attributes of the PCH FIVR.
Specifics:
- Revert recent change of the ACPI IRQ resources handling that
attempted to improve the ACPI IRQ override selection logic, but
introduced serious regressions on some systems (Hui Wang).
- Fix up quirks for AMD platforms in the suspend-to-idle support code
so as to take upcoming systems using uPEP HID AMDI007 into account
as appropriate (Mario Limonciello).
- Fix the code retrieving DPTF attributes of the PCH FIVR so that it
agrees on the return data type with the ACPI control method
evaluated for this purpose (Srinivas Pandruvada)"
* tag 'acpi-5.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI: DPTF: Fix reading of attributes
Revert "ACPI: resources: Add checks for ACPI IRQ override"
ACPI: PM: Add support for upcoming AMD uPEP HID AMDI007
Since commit 5c213172f412 ("pipe: fix and clarify pipe write wakeup
logic") we have sanitized the pipe write logic, and would only try to
wake up readers if they needed it.
In particular, if the pipe already had data in it before the write,
there was no point in trying to wake up a reader, since any existing
readers must have been aware of the pre-existing data already. Doing
extraneous wakeups will only cause potential thundering herd problems.
However, it turns out that some Android libraries have misused the EPOLL
interface, and expected "edge triggered" be to "any new write will
trigger it". Even if there was no edge in sight.
Quoting Sandeep Patil:
"The commit 5c213172f412 ('pipe: fix and clarify pipe write wakeup
logic') changed pipe write logic to wakeup readers only if the pipe
was empty at the time of write. However, there are libraries that
relied upon the older behavior for notification scheme similar to
what's described in [1]
One such library 'realm-core'[2] is used by numerous Android
applications. The library uses a similar notification mechanism as GNU
Make but it never drains the pipe until it is full. When Android moved
to v5.10 kernel, all applications using this library stopped working.
The library has since been fixed[3] but it will be a while before all
applications incorporate the updated library"
Our regression rule for the kernel is that if applications break from
new behavior, it's a regression, even if it was because the application
did something patently wrong. Also note the original report [4] by
Michal Kerrisk about a test for this epoll behavior - but at that point
we didn't know of any actual broken use case.
So add the extraneous wakeup, to approximate the old behavior.
[ I say "approximate", because the exact old behavior was to do a wakeup
not for each write(), but for each pipe buffer chunk that was filled
in. The behavior introduced by this change is not that - this is just
"every write will cause a wakeup, whether necessary or not", which
seems to be sufficient for the broken library use. ]
It's worth noting that this adds the extraneous wakeup only for the
write side, while the read side still considers the "edge" to be purely
about reading enough from the pipe to allow further writes.
See commit 6eb42155d04b ("pipe: fix and clarify pipe read wakeup logic")
for the pipe read case, which remains that "only wake up if the pipe was
full, and we read something from it".
This makes 'perf top' abort in some cases, and the right fix will
involve surgery that is too much to do at this stage, so revert for now
and fix it in the next merge window.
Merge tag 'block-5.14-2021-07-30' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
- gendisk freeing fix (Christoph)
- blk-iocost wake ordering fix (Tejun)
- tag allocation error handling fix (John)
- loop locking fix. While this isn't the prettiest fix in the world,
nobody has any good alternatives for 5.14. Something to likely
revisit for 5.15. (Tetsuo)
* tag 'block-5.14-2021-07-30' of git://git.kernel.dk/linux-block:
block: delay freeing the gendisk
blk-iocost: fix operation ordering in iocg_wake_fn()
blk-mq-sched: Fix blk_mq_sched_alloc_tags() error handling
loop: reintroduce global lock for safe loop_validate_file() traversal
Merge tag 'libata-5.14-2021-07-30' of git://git.kernel.dk/linux-block
Pull libata fixlets from Jens Axboe:
- A fix for PIO highmem (Christoph)
- Kill HAVE_IDE as it's now unused (Lukas)
* tag 'libata-5.14-2021-07-30' of git://git.kernel.dk/linux-block:
arch: Kconfig: clean up obsolete use of HAVE_IDE
libata: fix ata_pio_sector for CONFIG_HIGHMEM
Merge tag 'for-5.14-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix -Warray-bounds warning, to help external patchset to make it
default treewide
- fix writeable device accounting (syzbot report)
- fix fsync and log replay after a rename and inode eviction
- fix potentially lost error code when submitting multiple bios for
compressed range
* tag 'for-5.14-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: calculate number of eb pages properly in csum_tree_block
btrfs: fix rw device counting in __btrfs_free_extra_devids
btrfs: fix lost inode on log replay after mix of fsync, rename and inode eviction
btrfs: mark compressed range uptodate only if all bio succeed
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
Pull HID fixes from Jiri Kosina:
- resume timing fix for intel-ish driver (Ye Xiang)
- fix for using incorrect MMIO register in amd_sfh driver (Dylan
MacKenzie)
- Cintiq 24HDT / 27QHDT regression fix and touch processing fix for
Wacom driver (Jason Gerecke)
- device removal bugfix for ft260 driver (Michael Zaidman)
- other small assorted fixes
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid:
HID: ft260: fix device removal due to USB disconnect
HID: wacom: Skip processing of touches with negative slot values
HID: wacom: Re-enable touch by default for Cintiq 24HDT / 27QHDT
HID: Kconfig: Fix spelling mistake "Uninterruptable" -> "Uninterruptible"
HID: apple: Add support for Keychron K1 wireless keyboard
HID: fix typo in Kconfig
HID: ft260: fix format type warning in ft260_word_show()
HID: amd_sfh: Use correct MMIO register for DMA address
HID: asus: Remove check for same LED brightness on set
HID: intel-ish-hid: use async resume function
Subsystems affected by this patch series: lib, ocfs2, and mm (slub,
migration, and memcg)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm/memcg: fix NULL pointer dereference in memcg_slab_free_hook()
slub: fix unreclaimable slab stat for bulk free
mm/migrate: fix NR_ISOLATED corruption on 64-bit
mm: memcontrol: fix blocking rstat function called from atomic cgroup1 thresholding code
ocfs2: issue zeroout to EOF blocks
ocfs2: fix zero out valid data
lib/test_string.c: move string selftest in the Runtime Testing menu
Jakub Kicinski [Fri, 30 Jul 2021 17:29:52 +0000 (19:29 +0200)]
Merge tag 'linux-can-fixes-for-5.14-20210730' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can
Marc Kleine-Budde says:
====================
pull-request: can 2021-07-30
The first patch is by me and adds Yasushi SHOJI as a reviewer for the
Microchip CAN BUS Analyzer Tool driver.
Dan Carpenter's patch fixes a signedness bug in the hi311x driver.
Pavel Skripkin provides 4 patches, the first targets the mcba_usb
driver by adding the missing urb->transfer_dma initialization, which
was broken in a previous commit. The last 3 patches fix a memory leak
in the usb_8dev, ems_usb and esd_usb2 driver.
* tag 'linux-can-fixes-for-5.14-20210730' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can:
can: esd_usb2: fix memory leak
can: ems_usb: fix memory leak
can: usb_8dev: fix memory leak
can: mcba_usb_start(): add missing urb->transfer_dma initialization
can: hi311x: fix a signedness bug in hi3110_cmd()
MAINTAINERS: add Yasushi SHOJI as reviewer for the Microchip CAN BUS Analyzer Tool driver
====================
When kmalloc_node() a large memory, page is allocated, not slab, so when
freeing memory via kfree_rcu(), this large memory should not be used by
memcg_slab_free_hook(), because memcg_slab_free_hook() is is used for
slab.
Using page_objcgs_check() instead of page_objcgs() in
memcg_slab_free_hook() to fix this bug.
Link: https://lkml.kernel.org/r/20210728145655.274476-1-wanghai38@huawei.com Fixes: bcba9a944eca ("mm: memcontrol/slab: Use helpers to access slab page's memcg_data") Signed-off-by: Wang Hai <wanghai38@huawei.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB uses page allocator for higher order allocations and update
unreclaimable slab stat for such allocations. At the moment, the bulk
free for SLUB does not share code with normal free code path for these
type of allocations and have missed the stat update. So, fix the stat
update by common code. The user visible impact of the bug is the
potential of inconsistent unreclaimable slab stat visible through
meminfo and vmstat.
Link: https://lkml.kernel.org/r/20210728155354.3440560-1-shakeelb@google.com Fixes: 8e947948212b ("mm, sl[ou]b: improve memory accounting") Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to commit cf54f96edd2e ("mm/vmscan: fix NR_ISOLATED_FILE
corruption on 64-bit") avoid using unsigned int for nr_pages. With
unsigned int type the large unsigned int converts to a large positive
signed long.
Symptoms include CMA allocations hanging forever due to
alloc_contig_range->...->isolate_migratepages_block waiting forever in
"while (unlikely(too_many_isolated(pgdat)))".
Link: https://lkml.kernel.org/r/20210728042531.359409-1-aneesh.kumar@linux.ibm.com Fixes: 7fb56c7406ab ("mm: migrate: account THP NUMA migration counters correctly") Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Michael Ellerman <mpe@ellerman.id.au> Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 29 Jul 2021 21:53:44 +0000 (14:53 -0700)]
mm: memcontrol: fix blocking rstat function called from atomic cgroup1 thresholding code
Dan Carpenter reports:
The patch ab056c9e920b: "mm: memcontrol: switch to rstat" from Apr
29, 2021, leads to the following static checker warning:
kernel/cgroup/rstat.c:200 cgroup_rstat_flush()
warn: sleeping in atomic context
mm/memcontrol.c
3572 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3573 {
3574 unsigned long val;
3575
3576 if (mem_cgroup_is_root(memcg)) {
3577 cgroup_rstat_flush(memcg->css.cgroup);
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This is from static analysis and potentially a false positive. The
problem is that mem_cgroup_usage() is called from __mem_cgroup_threshold()
which holds an rcu_read_lock(). And the cgroup_rstat_flush() function
can sleep.
3578 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3579 memcg_page_state(memcg, NR_ANON_MAPPED);
3580 if (swap)
3581 val += memcg_page_state(memcg, MEMCG_SWAP);
3582 } else {
3583 if (!swap)
3584 val = page_counter_read(&memcg->memory);
3585 else
3586 val = page_counter_read(&memcg->memsw);
3587 }
3588 return val;
3589 }
__mem_cgroup_threshold() indeed holds the rcu lock. In addition, the
thresholding code is invoked during stat changes, and those contexts
have irqs disabled as well. If the lock breaking occurs inside the
flush function, it will result in a sleep from an atomic context.
Use the irqsafe flushing variant in mem_cgroup_usage() to fix this.
Link: https://lkml.kernel.org/r/20210726150019.251820-1-hannes@cmpxchg.org Fixes: ab056c9e920b ("mm: memcontrol: switch to rstat") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Chris Down <chris@chrisdown.name> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Junxiao Bi [Thu, 29 Jul 2021 21:53:41 +0000 (14:53 -0700)]
ocfs2: issue zeroout to EOF blocks
For punch holes in EOF blocks, fallocate used buffer write to zero the
EOF blocks in last cluster. But since ->writepage will ignore EOF
pages, those zeros will not be flushed.
This "looks" ok as commit 12099d12c789 ("ocfs2: fix data corruption by
fallocate") will zero the EOF blocks when extend the file size, but it
isn't. The problem happened on those EOF pages, before writeback, those
pages had DIRTY flag set and all buffer_head in them also had DIRTY flag
set, when writeback run by write_cache_pages(), DIRTY flag on the page
was cleared, but DIRTY flag on the buffer_head not.
When next write happened to those EOF pages, since buffer_head already
had DIRTY flag set, it would not mark page DIRTY again. That made
writeback ignore them forever. That will cause data corruption. Even
directio write can't work because it will fail when trying to drop pages
caches before direct io, as it found the buffer_head for those pages
still had DIRTY flag set, then it will fall back to buffer io mode.
To make a summary of the issue, as writeback ingores EOF pages, once any
EOF page is generated, any write to it will only go to the page cache,
it will never be flushed to disk even file size extends and that page is
not EOF page any more. The fix is to avoid zero EOF blocks with buffer
write.
The following code snippet from qemu-img could trigger the corruption.
Link: https://lkml.kernel.org/r/20210722054923.24389-2-junxiao.bi@oracle.com Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Changwei Ge <gechangwei@live.cn> Cc: Gang He <ghe@suse.com> Cc: Jun Piao <piaojun@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Junxiao Bi [Thu, 29 Jul 2021 21:53:38 +0000 (14:53 -0700)]
ocfs2: fix zero out valid data
If append-dio feature is enabled, direct-io write and fallocate could
run in parallel to extend file size, fallocate used "orig_isize" to
record i_size before taking "ip_alloc_sem", when
ocfs2_zeroout_partial_cluster() zeroout EOF blocks, i_size maybe already
extended by ocfs2_dio_end_io_write(), that will cause valid data zeroed
out.
Link: https://lkml.kernel.org/r/20210722054923.24389-1-junxiao.bi@oracle.com Fixes: 12099d12c789 ("ocfs2: fix data corruption by fallocate") Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Changwei Ge <gechangwei@live.cn> Cc: Gang He <ghe@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jun Piao <piaojun@huawei.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lib/test_string.c: move string selftest in the Runtime Testing menu
STRING_SELFTEST is presented in the "Library routines" menu. Move it in
Kernel hacking > Kernel Testing and Coverage > Runtime Testing together
with other similar tests found in lib/
--- Runtime Testing
<*> Test functions located in the hexdump module at runtime
<*> Test string functions (NEW)
<*> Test functions located in the string_helpers module at runtime
<*> Test strscpy*() family of functions at runtime
<*> Test kstrto*() family of functions at runtime
<*> Test printf() family of functions at runtime
<*> Test scanf() family of functions at runtime
Link: https://lkml.kernel.org/r/20210719185158.190371-1-mcroce@linux.microsoft.com Signed-off-by: Matteo Croce <mcroce@microsoft.com> Cc: Peter Rosin <peda@axentia.se> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The arch-specific Kconfig files use HAVE_IDE to indicate if IDE is
supported.
As IDE support and the HAVE_IDE config vanishes with commit 58cde165d7f2
("ide: remove the legacy ide driver"), there is no need to mention
HAVE_IDE in all those arch-specific Kconfig files.
The issue was identified with ./scripts/checkkconfigsymbols.py.
Fixes: 58cde165d7f2 ("ide: remove the legacy ide driver") Suggested-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com> Acked-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20210728182115.4401-1-lukas.bulwahn@gmail.com Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pavel Skripkin [Tue, 27 Jul 2021 17:00:46 +0000 (20:00 +0300)]
can: esd_usb2: fix memory leak
In esd_usb2_setup_rx_urbs() MAX_RX_URBS coherent buffers are allocated
and there is nothing, that frees them:
1) In callback function the urb is resubmitted and that's all
2) In disconnect function urbs are simply killed, but URB_FREE_BUFFER
is not set (see esd_usb2_setup_rx_urbs) and this flag cannot be used
with coherent buffers.
So, all allocated buffers should be freed with usb_free_coherent()
explicitly.
Side note: This code looks like a copy-paste of other can drivers. The
same patch was applied to mcba_usb driver and it works nice with real
hardware. There is no change in functionality, only clean-up code for
coherent buffers.
Pavel Skripkin [Tue, 27 Jul 2021 17:00:33 +0000 (20:00 +0300)]
can: ems_usb: fix memory leak
In ems_usb_start() MAX_RX_URBS coherent buffers are allocated and
there is nothing, that frees them:
1) In callback function the urb is resubmitted and that's all
2) In disconnect function urbs are simply killed, but URB_FREE_BUFFER
is not set (see ems_usb_start) and this flag cannot be used with
coherent buffers.
So, all allocated buffers should be freed with usb_free_coherent()
explicitly.
Side note: This code looks like a copy-paste of other can drivers. The
same patch was applied to mcba_usb driver and it works nice with real
hardware. There is no change in functionality, only clean-up code for
coherent buffers.
Pavel Skripkin [Tue, 27 Jul 2021 16:59:57 +0000 (19:59 +0300)]
can: usb_8dev: fix memory leak
In usb_8dev_start() MAX_RX_URBS coherent buffers are allocated and
there is nothing, that frees them:
1) In callback function the urb is resubmitted and that's all
2) In disconnect function urbs are simply killed, but URB_FREE_BUFFER
is not set (see usb_8dev_start) and this flag cannot be used with
coherent buffers.
So, all allocated buffers should be freed with usb_free_coherent()
explicitly.
Side note: This code looks like a copy-paste of other can drivers. The
same patch was applied to mcba_usb driver and it works nice with real
hardware. There is no change in functionality, only clean-up code for
coherent buffers.
Yasushi reported, that his Microchip CAN Analyzer stopped working
since commit a93fed2abc07 ("can: mcba_usb: fix memory leak in
mcba_usb"). The problem was in missing urb->transfer_dma
initialization.
In my previous patch to this driver I refactored mcba_usb_start() code
to avoid leaking usb coherent buffers. To archive it, I passed local
stack variable to usb_alloc_coherent() and then saved it to private
array to correctly free all coherent buffers on ->close() call. But I
forgot to initialize urb->transfer_dma with variable passed to
usb_alloc_coherent().
All of this was causing device to not work, since dma addr 0 is not
valid and following log can be found on bug report page, which points
exactly to problem described above.
| DMAR: [DMA Write] Request device [00:14.0] PASID ffffffff fault addr 0 [fault reason 05] PTE Write access is not set
Dan Carpenter [Thu, 29 Jul 2021 14:12:46 +0000 (17:12 +0300)]
can: hi311x: fix a signedness bug in hi3110_cmd()
The hi3110_cmd() is supposed to return zero on success and negative
error codes on failure, but it was accidentally declared as a u8 when
it needs to be an int type.
Fixes: 3a63790148fa ("can: hi311x: Add Holt HI-311x CAN driver") Link: https://lore.kernel.org/r/20210729141246.GA1267@kili Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Merge tag 'drm-fixes-2021-07-30' of git://anongit.freedesktop.org/drm/drm
Pull drm fixes from Dave Airlie:
"Regular drm fixes pull, seems about the right size, lots of small
fixes across the board, mostly amdgpu, but msm and i915 are in there
along with panel and ttm.
amdgpu:
- Fix resource leak in an error path
- Avoid stack contents exposure in error path
- pmops check fix for S0ix vs S3
- DCN 2.1 display fixes
- DCN 2.0 display fix
- Backlight control fix for laptops with HDR panels
- Maintainers updates
i915:
- Fix vbt port mask
- Fix around reading the right DSC disable fuse in display_ver 10
- Split display version 9 and 10 in intel_setup_outputs
* tag 'drm-fixes-2021-07-30' of git://anongit.freedesktop.org/drm/drm:
maintainers: add bugs and chat URLs for amdgpu
drm/amdgpu/display: only enable aux backlight control for OLED panels
drm/amd/display: ensure dentist display clock update finished in DCN20
drm/amd/display: Add missing DCN21 IP parameter
drm/amd/display: Guard DST_Y_PREFETCH register overflow in DCN21
drm/amdgpu: Check pmops for desired suspend state
drm/msm/dp: Initialize dp->aux->drm_dev before registration
drm/msm/dp: signal audio plugged change at dp_pm_resume
drm/msm/dp: Initialize the INTF_CONFIG register
drm/msm/dp: use dp_ctrl_off_link_stream during PHY compliance test run
drm/msm: Fix display fault handling
drm/msm/dpu: Fix sm8250_mdp register length
drm/amdgpu: Avoid printing of stack contents on firmware load error
drm/amdgpu: Fix resource leak on probe error path
drm/i915/display: split DISPLAY_VER 9 and 10 in intel_setup_outputs()
drm/i915: fix not reading DSC disable fuse in GLK
drm/i915/bios: Fix ports mask
drm/panel: panel-simple: Fix proper bpc for ytc700tlag_05_201c
drm/ttm: Initialize debugfs from ttm_global_init()
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mattst88/alpha
Pull alpha updates from Matt Turner:
"They're mostly small janitorial fixes but there's also more important
ones:
- drop the alpha-specific x86 binary loader (David Hildenbrand)
- regression fix for at least Marvel platforms (Mike Rapoport)
- fix for a scary-looking typo (Zheng Yongjun)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mattst88/alpha:
alpha: register early reserved memory in memblock
alpha: fix spelling mistakes
alpha: Remove space between * and parameter name
alpha: fp_emul: avoid init/cleanup_module names
alpha: Add syscall_get_return_value()
binfmt: remove support for em86 (alpha only)
alpha: fix typos in a comment
alpha: defconfig: add necessary configs for boot testing
alpha: Send stop IPI to send to online CPUs
alpha: convert comma to semicolon
alpha: remove undef inline in compiler.h
alpha: Kconfig: Replace HTTP links with HTTPS ones
alpha: __udiv_qrnnd should be exported
scsi: acornscsi: Fix fall-through warning for clang
Fix the following fallthrough warning (on ARM):
drivers/scsi/arm/acornscsi.c:2651:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
case res_success:
^
drivers/scsi/arm/acornscsi.c:2651:2: note: insert '__attribute__((fallthrough));' to silence this warning
case res_success:
^
__attribute__((fallthrough));
drivers/scsi/arm/acornscsi.c:2651:2: note: insert 'break;' to avoid fall-through
case res_success:
^
break; Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/lkml/202107260355.bF00i5bi-lkp@intel.com/ Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Fix MTE shared page detection
- Enable selftest's use of PMU registers when asked to
s390:
- restore 5.13 debugfs names
x86:
- fix sizes for vcpu-id indexed arrays
- fixes for AMD virtualized LAPIC (AVIC)
- other small bugfixes
Generic:
- access tracking performance test
- dirty_log_perf_test command line parsing fix
- Fix selftest use of obsolete pthread_yield() in favour of
sched_yield()
- use cpu_relax when halt polling
- fixed missing KVM_CLEAR_DIRTY_LOG compat ioctl"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: add missing compat KVM_CLEAR_DIRTY_LOG
KVM: use cpu_relax when halt polling
KVM: SVM: use vmcb01 in svm_refresh_apicv_exec_ctrl
KVM: SVM: tweak warning about enabled AVIC on nested entry
KVM: SVM: svm_set_vintr don't warn if AVIC is active but is about to be deactivated
KVM: s390: restore old debugfs names
KVM: SVM: delay svm_vcpu_init_msrpm after svm->vmcb is initialized
KVM: selftests: Introduce access_tracking_perf_test
KVM: selftests: Fix missing break in dirty_log_perf_test arg parsing
x86/kvm: fix vcpu-id indexed array sizes
KVM: x86: Check the right feature bit for MSR_KVM_ASYNC_PF_ACK access
docs: virt: kvm: api.rst: replace some characters
KVM: Documentation: Fix KVM_CAP_ENFORCE_PV_FEATURE_CPUID name
KVM: nSVM: Swap the parameter order for svm_copy_vmrun_state()/svm_copy_vmloadsave_state()
KVM: nSVM: Rename nested_svm_vmloadsave() to svm_copy_vmloadsave_state()
KVM: arm64: selftests: get-reg-list: actually enable pmu regs in pmu sublist
KVM: selftests: change pthread_yield to sched_yield
KVM: arm64: Fix detection of shared VMAs on guest fault
Darrick J. Wong [Mon, 26 Jul 2021 23:43:17 +0000 (16:43 -0700)]
xfs: prevent spoofing of rtbitmap blocks when recovering buffers
While reviewing the buffer item recovery code, the thought occurred to
me: in V5 filesystems we use log sequence number (LSN) tracking to avoid
replaying older metadata updates against newer log items. However, we
use the magic number of the ondisk buffer to find the LSN of the ondisk
metadata, which means that if an attacker can control the layout of the
realtime device precisely enough that the start of an rt bitmap block
matches the magic and UUID of some other kind of block, they can control
the purported LSN of that spoofed block and thereby break log replay.
Since realtime bitmap and summary blocks don't have headers at all, we
have no way to tell if a block really should be replayed. The best we
can do is replay unconditionally and hope for the best.
Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Two checkpoints in a single iclog. One is complete, the other just
contains the start record and overruns into a new iclog.
Timeline:
Before S1: Cache flush, log tail = X
At S1: Metadata stable, write start record and checkpoint
At C1: Write commit record, set NEED_FUA
Single iclog checkpoint, so no need for NEED_FLUSH
Log tail still = X, so no need for NEED_FLUSH
After C1,
Before S2: Cache flush, log tail = X
At S2: Metadata stable, write start record and checkpoint
After S2: Log tail moves to X+1
At EOIC: End of iclog, more journal data to write
Releases iclog
Not a commit iclog, so no need for NEED_FLUSH
Writes log tail X+1 into iclog.
At this point, the iclog has tail X+1 and NEED_FUA set. There has
been no cache flush for the metadata between X and X+1, and the
iclog writes the new tail permanently to the log. THis is sufficient
to violate on disk metadata/journal ordering.
We have two options here. The first is to detect this case in some
manner and ensure that the partial checkpoint write sets NEED_FLUSH
when the iclog is already marked NEED_FUA and the log tail changes.
This seems somewhat fragile and quite complex to get right, and it
doesn't actually make it obvious what underlying problem it is
actually addressing from reading the code.
The second option seems much cleaner to me, because it is derived
directly from the requirements of the C1 commit record in the iclog.
That is, when we write this commit record to the iclog, we've
guaranteed that the metadata/data ordering is correct for tail
update purposes. Hence if we only write the log tail into the iclog
for the *first* commit record rather than the log tail at the last
release, we guarantee that the log tail does not move past where the
the first commit record in the log expects it to be.
IOWs, taking the first option means that replay of C1 becomes
dependent on future operations doing the right thing, not just the
C1 checkpoint itself doing the right thing. This makes log recovery
almost impossible to reason about because now we have to take into
account what might or might not have happened in the future when
looking at checkpoints in the log rather than just having to
reconstruct the past...
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Tue, 27 Jul 2021 23:23:50 +0000 (16:23 -0700)]
xfs: need to see iclog flags in tracing
Because I cannot tell if the NEED_FLUSH flag is being set correctly
by the log force and CIL push machinery without it.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Tue, 27 Jul 2021 23:23:50 +0000 (16:23 -0700)]
xfs: Enforce attr3 buffer recovery order
From the department of "WTAF? How did we miss that!?"...
When we are recovering a buffer, the first thing we do is check the
buffer magic number and extract the LSN from the buffer. If the LSN
is older than the current LSN, we replay the modification to it. If
the metadata on disk is newer than the transaction in the log, we
skip it. This is a fundamental v5 filesystem metadata recovery
behaviour.
generic/482 failed with an attribute writeback failure during log
recovery. The write verifier caught the corruption before it got
written to disk, and the attr buffer dump looked like:
The highlighted bytes are the LSN that was replayed into the
buffer: 0x100000538. This is cycle 1, block 0x538. Prior to replay,
that block on disk looks like this:
Note the LSN stamped into the buffer on disk: 1/0x900. The version
on disk is much newer than the log transaction that was being
replayed. That's a bug, and should -never- happen.
So I immediately went to look at xlog_recover_get_buf_lsn() to check
that we handled the LSN correctly. I was wondering if there was a
similar "two commits with the same start LSN skips the second
replay" problem with buffers. I didn't get that far, because I found
a much more basic, rudimentary bug: xlog_recover_get_buf_lsn()
doesn't recognise buffers with XFS_ATTR3_LEAF_MAGIC set in them!!!
IOWs, attr3 leaf buffers fall through the magic number checks
unrecognised, so trigger the "recover immediately" behaviour instead
of undergoing an LSN check. IOWs, we incorrectly replay ATTR3 leaf
buffers and that causes silent on disk corruption of inode attribute
forks and potentially other things....
Git history shows this is *another* zero day bug, this time
introduced in commit c41f0ade8678 ("xfs: check LSN ordering for v5
superblocks during recovery") which failed to handle the attr3 leaf
buffers in recovery. And we've failed to handle them ever since...
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
to format the log inode. It writes the LSN from the inode item into
the log inode, and if recovery decides the inode item needs to be
replayed, it recovers the log inode LSN field and writes it into the
on disk inode LSN field.
Now this might seem like a reasonable thing to do, but it is wrong
on multiple levels. Firstly, if the item is not yet in the AIL,
item->li_lsn is zero. i.e. the first time the inode it is logged and
formatted, the LSN we write into the log inode will be zero. If we
only log it once, recovery will run and can write this zero LSN into
the inode.
This means that the next time the inode is logged and log recovery
runs, it will *always* replay changes to the inode regardless of
whether the inode is newer on disk than the version in the log and
that violates the entire purpose of recording the LSN in the inode
at writeback time (i.e. to stop it going backwards in time on disk
during recovery).
Secondly, if we commit the CIL to the journal so the inode item
moves to the AIL, and then relog the inode, the LSN that gets
stamped into the log inode will be the LSN of the inode's current
location in the AIL, not it's age on disk. And it's not the LSN that
will be associated with the current change. That means when log
recovery replays this inode item, the LSN that ends up on disk is
the LSN for the previous changes in the log, not the current
changes being replayed. IOWs, after recovery the LSN on disk is not
in sync with the LSN of the modifications that were replayed into
the inode. This, again, violates the recovery ordering semantics
that on-disk writeback LSNs provide.
Hence the inode LSN in the log dinode is -always- invalid.
Thirdly, recovery actually has the LSN of the log transaction it is
replaying right at hand - it uses it to determine if it should
replay the inode by comparing it to the on-disk inode's LSN. But it
doesn't use that LSN to stamp the LSN into the inode which will be
written back when the transaction is fully replayed. It uses the one
in the log dinode, which we know is always going to be incorrect.
Looking back at the change history, the inode logging was broken by
commit 958c8f39453c ("xfs: cull unnecessary icdinode fields") way
back in 2016 by a stupid idiot who thought he knew how this code
worked. i.e. me. That commit replaced an in memory di_lsn field that
was updated only at inode writeback time from the inode item.li_lsn
value - and hence always contained the same LSN that appeared in the
on-disk inode - with a read of the inode item LSN at inode format
time. CLearly these are not the same thing.
Before 958c8f39453c, the log recovery behaviour was irrelevant,
because the LSN in the log inode always matched the on-disk LSN at
the time the inode was logged, hence recovery of the transaction
would never make the on-disk LSN in the inode go backwards or get
out of sync.
A symptom of the problem is this, caught from a failure of
generic/482. Before log recovery, the inode has been allocated but
never used:
You can see that the LSN of the on-disk inode is 0, even though it
clearly has been written to disk. I point out this inode, because
the generic/482 failure occurred because several adjacent inodes in
this specific inode cluster were not replayed correctly and still
appeared to be zero on disk when all the other metadata (inobt,
finobt, directories, etc) indicated they should be allocated and
written back.
The fix for this is two-fold. The first is that we need to either
revert the LSN changes in 958c8f39453c or stop logging the inode LSN
altogether. If we do the former, log recovery does not need to
change but we add 8 bytes of memory per inode to store what is
largely a write-only inode field. If we do the latter, log recovery
needs to stamp the on-disk inode in the same manner that inode
writeback does.
I prefer the latter, because we shouldn't really be trying to log
and replay changes to the on disk LSN as the on-disk value is the
canonical source of the on-disk version of the inode. It also
matches the way we recover buffer items - we create a buf_log_item
that carries the current recovery transaction LSN that gets stamped
into the buffer by the write verifier when it gets written back
when the transaction is fully recovered.
However, this might break log recovery on older kernels even more,
so I'm going to simply ignore the logged value in recovery and stamp
the on-disk inode with the LSN of the transaction being recovered
that will trigger writeback on transaction recovery completion. This
will ensure that the on-disk inode LSN always reflects the LSN of
the last change that was written to disk, regardless of whether it
comes from log recovery or runtime writeback.
Fixes: 958c8f39453c ("xfs: cull unnecessary icdinode fields") Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Tue, 27 Jul 2021 23:23:49 +0000 (16:23 -0700)]
xfs: avoid unnecessary waits in xfs_log_force_lsn()
Before waiting on a iclog in xfs_log_force_lsn(), we don't check to
see if the iclog has already been completed and the contents on
stable storage. We check for completed iclogs in xfs_log_force(), so
we should do the same thing for xfs_log_force_lsn().
This fixed some random up-to-30s pauses seen in unmounting
filesystems in some tests. A log force ends up waiting on completed
iclog, and that doesn't then get flushed (and hence the log force
get completed) until the background log worker issues a log force
that flushes the iclog in question. Then the unmount unblocks and
continues.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Tue, 27 Jul 2021 23:23:49 +0000 (16:23 -0700)]
xfs: log forces imply data device cache flushes
After fixing the tail_lsn vs cache flush race, generic/482 continued
to fail in a similar way where cache flushes were missing before
iclog FUA writes. Tracing of iclog state changes during the fsstress
workload portion of the test (via xlog_iclog* events) indicated that
iclog writes were coming from two sources - CIL pushes and log
forces (due to fsync/O_SYNC operations). All of the cases where a
recovery problem was triggered indicated that the log force was the
source of the iclog write that was not preceeded by a cache flush.
This was an oversight in the modifications made in commit 15906f3a6360 ("xfs: journal IO cache flush reductions"). Log forces
for fsync imply a data device cache flush has been issued if an
iclog was flushed to disk and is indicated to the caller via the
log_flushed parameter so they can elide the device cache flush if
the journal issued one.
The change in 15906f3a6360 results in iclogs only issuing a cache
flush if XLOG_ICL_NEED_FLUSH is set on the iclog, but this was not
added to the iclogs that the log force code flushes to disk. Hence
log forces are no longer guaranteeing that a cache flush is issued,
hence opening up a potential on-disk ordering failure.
Log forces should also set XLOG_ICL_NEED_FUA as well to ensure that
the actual iclogs it forces to the journal are also on stable
storage before it returns to the caller.
This patch introduces the xlog_force_iclog() helper function to
encapsulate the process of taking a reference to an iclog, switching
its state if WANT_SYNC and flushing it to stable storage correctly.
Both xfs_log_force() and xfs_log_force_lsn() are converted to use
it, as is xlog_unmount_write() which has an elaborate method of
doing exactly the same "write this iclog to stable storage"
operation.
Further, if the log force code needs to wait on a iclog in the
WANT_SYNC state, it needs to ensure that iclog also results in a
cache flush being issued. This covers the case where the iclog
contains the commit record of the CIL flush that the log force
triggered, but it hasn't been written yet because there is still an
active reference to the iclog.
Note: this whole cache flush whack-a-mole patch is a result of log
forces still being iclog state centric rather than being CIL
sequence centric. Most of this nasty code will go away in future
when log forces are converted to wait on CIL sequence push
completion rather than iclog completion. With the CIL push algorithm
guaranteeing that the CIL checkpoint is fully on stable storage when
it completes, we no longer need to iterate iclogs and push them to
ensure a CIL sequence push has completed and so all this nasty iclog
iteration and flushing code will go away.
Fixes: 15906f3a6360 ("xfs: journal IO cache flush reductions") Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Tue, 27 Jul 2021 23:23:48 +0000 (16:23 -0700)]
xfs: factor out forced iclog flushes
We force iclogs in several places - we need them all to have the
same cache flush semantics, so start by factoring out the iclog
force into a common helper.
Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Tue, 27 Jul 2021 23:23:48 +0000 (16:23 -0700)]
xfs: fix ordering violation between cache flushes and tail updates
There is a race between the new CIL async data device metadata IO
completion cache flush and the log tail in the iclog the flush
covers being updated. This can be seen by repeating generic/482 in a
loop and eventually log recovery fails with a failures such as this:
Analysis of the logwrite replay shows that there were no writes to
the data device between the FUA @ write 124 and the FUA at write @
125, but log recovery @ 125 failed. The difference was the one log
write @ 125 moved the tail of the log forwards from (1,8) to (1,32)
and so the inode create intent in (1,8) was not replayed and so the
inode cluster was zero on disk when replay of the first inode item
in (1,32) was attempted.
What this meant was that the journal write that occurred at @ 125
did not ensure that metadata completed before the iclog was written
was correctly on stable storage. The tail of the log moved forward,
so IO must have been completed between the two iclog writes. This
means that there is a race condition between the unconditional async
cache flush in the CIL push work and the tail LSN that is written to
the iclog. This happens like so:
CIL push work AIL push work
------------- -------------
Add to committing list
start async data dev cache flush
.....
<flush completes>
<all writes to old tail lsn are stable>
xlog_write
.... push inode create buffer
<start IO>
.....
xlog_write(commit record)
.... <IO completes>
log tail moves
xlog_assign_tail_lsn()
start_lsn == commit_lsn
<no iclog preflush!>
xlog_state_release_iclog
__xlog_state_release_iclog()
<writes *new* tail_lsn into iclog>
xlog_sync()
....
submit_bio()
<tail in log moves forward without flushing written metadata>
Essentially, this can only occur if the commit iclog is issued
without a cache flush. If the iclog bio is submitted with
REQ_PREFLUSH, then it will guarantee that all the completed IO is
one stable storage before the iclog bio with the new tail LSN in it
is written to the log.
IOWs, the tail lsn that is written to the iclog needs to be sampled
*before* we issue the cache flush that guarantees all IO up to that
LSN has been completed.
To fix this without giving up the performance advantage of the
flush/FUA optimisations (e.g. g/482 runtime halves with 5.14-rc1
compared to 5.13), we need to ensure that we always issue a cache
flush if the tail LSN changes between the initial async flush and
the commit record being written. THis requires sampling the tail_lsn
before we start the flush, and then passing the sampled tail LSN to
xlog_state_release_iclog() so it can determine if the the tail LSN
has changed while writing the checkpoint. If the tail LSN has
changed, then it needs to set the NEED_FLUSH flag on the iclog and
we'll issue another cache flush before writing the iclog.
Fixes: 15906f3a6360 ("xfs: journal IO cache flush reductions") Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Tue, 27 Jul 2021 23:23:47 +0000 (16:23 -0700)]
xfs: fold __xlog_state_release_iclog into xlog_state_release_iclog
Fold __xlog_state_release_iclog into its only caller to prepare
make an upcoming fix easier.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: split from a larger patch] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Dave Chinner [Tue, 27 Jul 2021 23:23:47 +0000 (16:23 -0700)]
xfs: external logs need to flush data device
The recent journal flush/FUA changes replaced the flushing of the
data device on every iclog write with an up-front async data device
cache flush. Unfortunately, the assumption of which this was based
on has been proven incorrect by the flush vs log tail update
ordering issue. As the fix for that issue uses the
XLOG_ICL_NEED_FLUSH flag to indicate that data device needs a cache
flush, we now need to (once again) ensure that an iclog write to
external logs that need a cache flush to be issued actually issue a
cache flush to the data device as well as the log device.
Fixes: 15906f3a6360 ("xfs: journal IO cache flush reductions") Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>