};
/**
- * struct damon_ctx - Represents a context for each monitoring. This is the
- * main interface that allows users to set the attributes and get the results
- * of the monitoring.
+ * struct damon_attrs - Monitoring attributes for accuracy/overhead control.
*
* @sample_interval: The time between access samplings.
* @aggr_interval: The time between monitor results aggregations.
* @ops_update_interval: The time between monitoring operations updates.
+ * @min_nr_regions: The minimum number of adaptive monitoring
+ * regions.
+ * @max_nr_regions: The maximum number of adaptive monitoring
+ * regions.
*
* For each @sample_interval, DAMON checks whether each region is accessed or
* not. It aggregates and keeps the access information (number of accesses to
* @ops_update_interval. All time intervals are in micro-seconds.
* Please refer to &struct damon_operations and &struct damon_callback for more
* detail.
+ */
+struct damon_attrs {
+ unsigned long sample_interval;
+ unsigned long aggr_interval;
+ unsigned long ops_update_interval;
+ unsigned long min_nr_regions;
+ unsigned long max_nr_regions;
+};
+
+/**
+ * struct damon_ctx - Represents a context for each monitoring. This is the
+ * main interface that allows users to set the attributes and get the results
+ * of the monitoring.
*
+ * @attrs: Monitoring attributes for accuracy/overhead control.
* @kdamond: Kernel thread who does the monitoring.
* @kdamond_lock: Mutex for the synchronizations with @kdamond.
*
* @ops: Set of monitoring operations for given use cases.
* @callback: Set of callbacks for monitoring events notifications.
*
- * @min_nr_regions: The minimum number of adaptive monitoring regions.
- * @max_nr_regions: The maximum number of adaptive monitoring regions.
* @adaptive_targets: Head of monitoring targets (&damon_target) list.
* @schemes: Head of schemes (&damos) list.
*/
struct damon_ctx {
- unsigned long sample_interval;
- unsigned long aggr_interval;
- unsigned long ops_update_interval;
+ struct damon_attrs attrs;
/* private: internal use only */
struct timespec64 last_aggregation;
struct damon_operations ops;
struct damon_callback callback;
- unsigned long min_nr_regions;
- unsigned long max_nr_regions;
struct list_head adaptive_targets;
struct list_head schemes;
};
if (!ctx)
return NULL;
- ctx->sample_interval = 5 * 1000;
- ctx->aggr_interval = 100 * 1000;
- ctx->ops_update_interval = 60 * 1000 * 1000;
+ ctx->attrs.sample_interval = 5 * 1000;
+ ctx->attrs.aggr_interval = 100 * 1000;
+ ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
ktime_get_coarse_ts64(&ctx->last_aggregation);
ctx->last_ops_update = ctx->last_aggregation;
mutex_init(&ctx->kdamond_lock);
- ctx->min_nr_regions = 10;
- ctx->max_nr_regions = 1000;
+ ctx->attrs.min_nr_regions = 10;
+ ctx->attrs.max_nr_regions = 1000;
INIT_LIST_HEAD(&ctx->adaptive_targets);
INIT_LIST_HEAD(&ctx->schemes);
if (min_nr_reg > max_nr_reg)
return -EINVAL;
- ctx->sample_interval = sample_int;
- ctx->aggr_interval = aggr_int;
- ctx->ops_update_interval = ops_upd_int;
- ctx->min_nr_regions = min_nr_reg;
- ctx->max_nr_regions = max_nr_reg;
+ ctx->attrs.sample_interval = sample_int;
+ ctx->attrs.aggr_interval = aggr_int;
+ ctx->attrs.ops_update_interval = ops_upd_int;
+ ctx->attrs.min_nr_regions = min_nr_reg;
+ ctx->attrs.max_nr_regions = max_nr_reg;
return 0;
}
sz += r->ar.end - r->ar.start;
}
- if (ctx->min_nr_regions)
- sz /= ctx->min_nr_regions;
+ if (ctx->attrs.min_nr_regions)
+ sz /= ctx->attrs.min_nr_regions;
if (sz < DAMON_MIN_REGION)
sz = DAMON_MIN_REGION;
static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
{
return damon_check_reset_time_interval(&ctx->last_aggregation,
- ctx->aggr_interval);
+ ctx->attrs.aggr_interval);
}
/*
damon_for_each_target(t, ctx)
nr_regions += damon_nr_regions(t);
- if (nr_regions > ctx->max_nr_regions / 2)
+ if (nr_regions > ctx->attrs.max_nr_regions / 2)
return;
/* Maybe the middle of the region has different access frequency */
if (last_nr_regions == nr_regions &&
- nr_regions < ctx->max_nr_regions / 3)
+ nr_regions < ctx->attrs.max_nr_regions / 3)
nr_subregions = 3;
damon_for_each_target(t, ctx)
static bool kdamond_need_update_operations(struct damon_ctx *ctx)
{
return damon_check_reset_time_interval(&ctx->last_ops_update,
- ctx->ops_update_interval);
+ ctx->attrs.ops_update_interval);
}
/*
continue;
}
- kdamond_usleep(ctx->sample_interval);
+ kdamond_usleep(ctx->attrs.sample_interval);
if (ctx->ops.check_accesses)
max_nr_accesses = ctx->ops.check_accesses(ctx);
mutex_lock(&ctx->kdamond_lock);
ret = scnprintf(kbuf, ARRAY_SIZE(kbuf), "%lu %lu %lu %lu %lu\n",
- ctx->sample_interval, ctx->aggr_interval,
- ctx->ops_update_interval, ctx->min_nr_regions,
- ctx->max_nr_regions);
+ ctx->attrs.sample_interval, ctx->attrs.aggr_interval,
+ ctx->attrs.ops_update_interval,
+ ctx->attrs.min_nr_regions, ctx->attrs.max_nr_regions);
mutex_unlock(&ctx->kdamond_lock);
return simple_read_from_buffer(buf, count, ppos, kbuf, ret);
unsigned int age_weight = s->quota.weight_age;
int hotness;
- max_nr_accesses = c->aggr_interval / c->sample_interval;
+ max_nr_accesses = c->attrs.aggr_interval / c->attrs.sample_interval;
freq_subscore = r->nr_accesses * DAMON_MAX_SUBSCORE / max_nr_accesses;
- age_in_sec = (unsigned long)r->age * c->aggr_interval / 1000000;
+ age_in_sec = (unsigned long)r->age * c->attrs.aggr_interval / 1000000;
for (age_in_log = 0; age_in_log < DAMON_MAX_AGE_IN_LOG && age_in_sec;
age_in_log++, age_in_sec >>= 1)
;
for (i = 0; i < 3; i++)
sz += regions[i].end - regions[i].start;
- if (ctx->min_nr_regions)
- sz /= ctx->min_nr_regions;
+ if (ctx->attrs.min_nr_regions)
+ sz /= ctx->attrs.min_nr_regions;
if (sz < DAMON_MIN_REGION)
sz = DAMON_MIN_REGION;